MapReduce中combine、partition、shuffle的作用是什么

转载自:https://www.cnblogs.com/brucemengbm/p/7053723.html
Mapreduce在hadoop中是一个比較难以的概念。以下须要用心看,然后自己就能总结出来了。

概括:
combine和partition都是函数。中间的步骤应该仅仅有shuffle!

1.combine
combine分为map端和reduce端,作用是把同一个key的键值对合并在一起,能够自己定义的。
combine函数把一个map函数产生的<key,value>对(多个key,value)合并成一个新的<key2,value2>.将新的<key2,value2>作为输入到reduce函数中
这个value2亦可称之为values,由于有多个。这个合并的目的是为了降低网络传输。

详细实现是由Combine类。
实现combine函数,该类的主要功能是合并同样的key键。通过job.setCombinerClass()方法设置。默觉得null,不合并中间结果。实现map函数
详细调用:(下图是调用reduce,合并map的个数)

难点:不知道这个reduce和mapreduce中的reduce差别是什么?
以下简单说一下:后面慢慢琢磨:
在mapreduce中。map多,reduce少。
在reduce中因为数据量比較多。所以干脆。我们先把自己map里面的数据归类,这样到了reduce的时候就减轻了压力。

这里举个样例:
map与reduce的样例
map理解为销售人员,reduce理解为销售经理。
每一个人(map)仅仅管销售,赚了多少钱销售人员不统计。也就是说这个销售人员没有Combine,那么这个销售经理就累垮了。由于每一个人都没有统计,它须要统计全部人员卖了多少件。赚钱了多少钱。
这样是不行的。所以销售经理(reduce)为了减轻压力,每一个人(map)都必须统计自己卖了多少钱,赚了多少钱(Combine),然后经理所做的事情就是统计每一个人统计之后的结果。这样经理就轻松多了。所以Combine在map所做的事情。减轻了reduce的事情。
(这就是为什么说map的Combine干reduce的事情。相信你应该明确了)

public static void main(String[] args)throws IOException {
Configuration conf = new Configuration();
Job job = new Job(conf);
job.setInputFormatClass(TextInputFormat.class);
job.setMapperClass(Mapper.class);
job.setCombinerClass(reduce.class);
job.setPartitionerClass(HashPartitioner.class);
job.setReducerClass(Reducer.class);
job.setOutputFormatClass(TextOutFormat.class);
}
}

2.partition
partition是切割map每一个节点的结果,依照key分别映射给不同的reduce。也是能够自己定义的。这里事实上能够理解归类。
我们对于错综复杂的数据归类。比方在动物园里有牛羊鸡鸭鹅。他们都是混在一起的。可是到了晚上他们就各自牛回牛棚。羊回羊圈,鸡回鸡窝。partition的作用就是把这些数据归类。仅仅只是在敲代码的时候,mapreduce使用哈希HashPartitioner帮我们归类了。这个我们也能够自己定义。

HashPartitioner是mapreduce的默认partitioner。

计算方法是

which reducer=(key.hashCode() & Integer.MAX_VALUE) % numReduceTasks。得到当前的目的reducer。

以下在看该怎样自己定义,该怎样调用:(以下便是自己定义了一个Partition函数。红字部分是算法的核心,也就是分区的核心)

public static class Partition extends Partitioner<IntWritable, IntWritable> {
@Override
public int getPartition(IntWritable key, IntWritable value,
int numPartitions) {
int Maxnumber = 65223;
int bound = Maxnumber / numPartitions + 1;
int keynumber = key.get();
for (int i = 0; i < numPartitions; i++) {
if (keynumber < bound * i && keynumber >= bound * (i - 1)) {
return i - 1;
}
}
return 0;
}
}

那么我们该怎样调用:(以下调用之后,你的分区函数就生效了)

public static void main(String[] args) throws IOException,
InterruptedException, ClassNotFoundException {
Configuration conf = new Configuration();
Job job = new Job(conf, "sort");
job.setJarByClass(Sort.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setPartitionerClass(Partition.class);
job.setOutputKeyClass(IntWritable.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.setInputPaths(job, "/home/asheng/hadoop/in");
FileOutputFormat
.setOutputPath(job, new Path("/home/asheng/hadoop/out"));
job.waitForCompletion(true);
}
}

3.shuffle

shuffle就是map和reduce之间的过程。包括了两端的combine和partition。

它比較难以理解,由于我们摸不着。看不到它。它仅仅是理论存在的。并且确实存在,它属于mapreduce的框架。编程的时候。我们用不到它,它属于mapreduce框架。具体能够看通过实例让你真正明确mapreduce---填空式、分布(切割)编程

3.1shuffle的作用是
Map的结果,会通过partition分发到Reducer上,Reducer做完Reduce操作后。通过OutputFormat,进行输出
shuffle阶段的主要函数是fetchOutputs(),这个函数的功能就是将map阶段的输出,copy到reduce 节点本地。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,137评论 6 511
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,824评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,465评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,131评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,140评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,895评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,535评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,435评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,952评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,081评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,210评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,896评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,552评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,089评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,198评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,531评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,209评论 2 357