人脸识别数据集

https://github.com/betars/Face-Resources

+

Face-Resources

Following is a growing list of some of the materials I found on the web for research on face recognition algorithm.

Papers

DeepFace.A work from Facebook.

FaceNet.A work from Google.

One Millisecond Face Alignment with an Ensemble of Regression Trees. Dlib implements the algorithm.

DeepID

DeepID2

DeepID3

Learning Face Representation from Scratch

Face Search at Scale: 80 Million Gallery

A Discriminative Feature Learning Approach for Deep Face Recognition

NormFace: L2 Hypersphere Embedding for Face Verification.* attention: model released !*

SphereFace: Deep Hypersphere Embedding for Face Recognition

Datasets

CASIA WebFace Database. 10,575 subjects and 494,414 images

Labeled Faces in the Wild.13,000 images and 5749 subjects

Large-scale CelebFaces Attributes (CelebA) Dataset202,599 images and 10,177 subjects. 5 landmark locations, 40 binary attributes.

MSRA-CFW. 202,792 images and 1,583 subjects.

MegaFace Dataset1 Million Faces for Recognition at Scale 690,572 unique people

FaceScrub. A Dataset With Over 100,000 Face Images of 530 People.

FDDB.Face Detection and Data Set Benchmark. 5k images.

AFLW.Annotated Facial Landmarks in the Wild: A Large-scale, Real-world Database for Facial Landmark Localization. 25k images.

AFW. Annotated Faces in the Wild. ~1k images. 10.3D Mask Attack Dataset. 76500 frames of 17 persons using Kinect RGBD with eye positions (Sebastien Marcel)

Audio-visual database for face and speaker recognition.Mobile Biometry MOBIOhttp://www.mobioproject.org/

BANCA face and voice database. Univ of Surrey

Binghampton Univ 3D static and dynamic facial expression database. (Lijun Yin, Peter Gerhardstein and teammates)

The BioID Face Database. BioID group

Biwi 3D Audiovisual Corpus of Affective Communication. 1000 high quality, dynamic 3D scans of faces, recorded while pronouncing a set of English sentences.

Cohn-Kanade AU-Coded Expression Database. 500+ expression sequences of 100+ subjects, coded by activated Action Units (Affect Analysis Group, Univ. of Pittsburgh.

CMU/MIT Frontal Faces. Training set: 2,429 faces, 4,548 non-faces; Test set: 472 faces, 23,573 non-faces.

AT&T Database of Faces400 faces of 40 people (10 images per people)

Trained Model

openface. Face recognition with Google's FaceNet deep neural network using Torch.

VGG-Face. VGG-Face CNN descriptor. Impressed embedding loss.

SeetaFace Engine. SeetaFace Engine is an open source C++ face recognition engine, which can run on CPU with no third-party dependence.

Caffe-face- Caffe Face is developed for face recognition using deep neural networks.

Norm-Face- Norm Face, finetuned fromcenter-faceandLight-CNN

Tutorial

Deep Learning for Face Recognition. Shiguan Shan, Xiaogang Wang, and Ming yang.

Software

OpenCV. With some trained face detector models.

dlib. Dlib implements a state-of-the-art of face Alignment algorithm.

ccv. With a state-of-the-art frontal face detector

libfacedetection. A binary library for face detection in images.

SeetaFaceEngine. An open source C++ face recognition engine.

##Frameworks

Caffe

Torch7

Theano

cuda-convnet

MXNET

Tensorflow

tiny-dnn

Miscellaneous

faceswapFace swapping with Python, dlib, and OpenCV

Facial Keypoints DetectionCompetition on Kaggle.

An implementation of Face Alignment at 3000fps via Local Binary Features

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

  • 这一次,我是真正明白了“出来混的,迟早都要还的。”对于我这种要技术没技术,要能力没能力的初级新媒体运营人员来说,这...
    小安日志阅读 2,286评论 0 0
  • 确切的说,运球过人技术在中国的基层、校园篮球文化思想中占据着重要位置。大家也许都知道三威胁的进攻技术。原本它的威胁...
    篮球伊甸园阅读 3,398评论 0 2
  • 以前的我,常常用尽各种办法,敷面膜,内服,外面买的不放心,自己研发。 这中间,确实有过皮肤好的时候,那种好,不需要...
    苍穹一君阅读 1,738评论 0 1

友情链接更多精彩内容