Redis主从复制

主从复制

image.png
  1. 在从节点的配置文件中的slaveof配置项中配置了主节点的IP和port后,从节点就知道自己要和那个主节点进行连接了。

  2. 从节点内部有个定时任务,会每秒检查自己要连接的主节点是否上线,如果发现了主节点上线,就跟主节点进行网络连接。注意,此时仅仅是取得连接,还没有进行主从数据同步。

  3. 从节点发送ping命令给主节点进行连接,如果设置了口令认证(主节点设置了requirepass),那么从节点必须发送正确的口令(masterauth)进行认证。

  4. 主从节点连接成功后,主从节点进行一次快照同步。事实上,是否进行快照同步需要判断主节点的run id,当从节点发现已经连接过某个run id的主节点,那么视此次连接为重新连接,就不会进行快照同步。相同IP和port的主节点每次重启服务都会生成一个新的run id,所以每次主节点重启服务都会进行一次快照同步,如果想重启主节点服务而不改变run id,使用redis-cli debug reload命令。

  5. 当开始进行快照同步后,主节点在本地生成一份rdb快照文件,并将这个rdb文件发送给从节点,如果复制时间超过60秒(配置项:repl-timeout),那么就会认为复制失败,如果数据量比较大,要适当调大这个参数的值。
    主从节点进行快照同步的时候,主节点会把接收到的新请求命令写在缓存 buffer 中,当快照同步完成后,再把 buffer 中的指令增量同步到从节点。如果在快照同步期间,内存缓冲区大小超过256MB,或者超过64MB的状态持续时间超过60s(配置项:client-output-buffer-limit slave 256MB 64MB 60),那么也会认为快照同步失败。

  6. 从节点接收到RDB文件之后,清空自己的旧数据,然后重新加载RDB到自己的内存中,在这个过程中基于旧的数据对外提供服务。如果主节点开启了AOF,那么在快照同步结束后会立即执行BGREWRITEAOF,重写AOF文件。

  7. 主节点维护了一个backlog文件,默认是1MB大小,主节点向从节点发送全量数据(RDB文件)时,也会同步往backlog中写,这样当发送全量数据这个过程意外中断后,从backlog文件中可以得知数据有哪些是发送成功了,哪些还没有发送,然后当主从节点再次连接后,从失败的地方开始增量同步。这里需要注意的是,当快照同步连接中断后,主从节点再次连接并非是第一次连接,所以进行增量同步,而不是继续进行快照同步。

  8. 快照同步完成后,主节点后续接收到写请求导致数据变化后,将和从节点进行增量同步,遇到 buffer 溢出则再触发快照同步。

  9. 主从节点都会维护一个offset,随着主节点的数据变化以及主从同步的进行,主从节点会不断累加自己维护的offset,从节点每秒都会上报自己的offset给主节点,主节点也会保存每个从节点的offset,这样主从节点就能知道互相之间的数据一致性情况。从节点发送psync runid offset命令给主节点从而开始主从同步,主节点会根据自身的情况返回响应信息,可能是FULLRESYNC runid offset触发全量复制,也可能是CONTINUE触发增量复制。

  10. 主从节点因为网络原因导致断开,当网络接通后,不需要手工干预,可以自动重新连接。

  11. 主节点如果发现有多个从节点连接,在快照同步过程中仅仅会生成一个RDB文件,用一份数据服务所有从节点进行快照同步。

  12. 节点不会处理过期key,当主节点处理了一个过期key,会模拟一条del命令发送给从节点。

  13. 主从节点会保持心跳来检测对方是否在线,主节点默认每隔10秒发送一次heartbeat,从节点默认每隔1秒发送一个heartbeat。

  14. 建议在主节点使用AOF+RDB的持久化方式,并且在主节点定期备份RDB文件,而从节点不要开启AOF机制,原因有两个,一是从节点AOF会降低性能,二是如果主节点数据丢失,主节点数据同步给从节点后,从节点收到了空的数据,如果开启了AOF,会生成空的AOF文件,基于AOF恢复数据后,全部数据就都丢失了,而如果不开启AOF机制,从节点启动后,基于自身的RDB文件恢复数据,这样不至于丢失全部数据。

增量同步

redis 同步的是指令流,主节点会将那些对自己的状态产生修改性影响的指令记录在本地的内存 buffer 中,然后异步将 buffer 中的指令同步到从节点,从节点一边执行同步的指令流来达到和主节点一样的状态,一边向主节点反馈自己同步到哪里了 (偏移量,这是redis-2.8之后才有的特性)。从节点同步数据的时候不会影响主节点的正常工作,也不会影响自己对外提供读服务的功能,从节点会用旧的数据来提供服务,当同步完成后,需要删除旧数据集,加载新数据,这个时候才会暂停对外服务。

因为内存的 buffer 是有限的,所以 redis 主节点不能将所有的指令都记录在内存 buffer 中。redis 的复制内存 buffer 是一个定长的环形数组,如果数组内容满 了,就会从头开始覆盖前面的内容


image.png

快照同步

如果节点间网络通信不好,那么当从节点同步的速度不如主节点接收新写请求的速度时,buffer 中会丢失一部分指令,从节点中的数据将与主节点中的数据不一致,此时将会触发快照同步。

快照同步是一个非常耗费资源的操作,它首先需要在主节点上进行一次 bgsave 将当前内存的数据全部快照到RDB文件中,然后再将快照文件的内容全部传送到从节点。从节点将RDB文件接受完毕后,立即执行一次全量加载,加载之前先要将当前内存的数据清空。加载完毕后通知主节点继续进行增量同步。

在整个快照同步进行的过程中,主节点的复制 buffer 还在不停的往前移动,如果快照同步的时间过长或者复制 buffer 太小,都会导致同步期间的增量指令在复制 buffer 中被覆盖,这样就会导致快照同步完成后无法进行增量复制,然后会再次发起快照同步,如此极有可能会陷入快照同步的死循环。所以需要配置一个合适的复制 buffer 大小参数,避免快照复制的死循环。

由于缓冲区长度固定且有限,因此可以备份的写命令也有限,当主从节点offset的差距过大超过缓冲区长度时,将无法执行部分复制,只能执行全量复制。反过来说,为了提高网络中断时部分复制执行的概率,可以根据需要增大复制积压缓冲区的大小(通过配置repl-backlog-size)来设置;例如如果网络中断的平均时间是60s,而主节点平均每秒产生的写命令(特定协议格式)所占的字节数为100KB,则复制积压缓冲区的平均需求为6MB,保险起见,可以设置为12MB,来保证绝大多数断线情况都可以使用部分复制。

复制的开销

1.bgsave的开销,每次bgsave需要fork子进程,对内存和CPU的开销很大

2.RDB文件网络传输的时间(网络带宽)

3.从节点清空数据的时间

4.从节点加载RDB的时间

5.可能的AOF重写时间(如果我们的从节点开启了AOF,则加载完RDB后会对AOF进行一个重写,保证AOF是最新的)


Redis持久化

Redis 的持久化机制有两种,第一种是快照,第二种是 AOF 日志。

区别

快照是一次全量备份,AOF 日志是连续的增量备份。
快照是内存数据的二进制序列化形式,在存储上非常紧凑,而 AOF 日志记录的是内存数据修改的指令记录文本。
AOF 日志在长期的运行过程中会变得无比庞大,数据库重启时需要加载 AOF 日志进行指令重放,这个时间就会无比漫长,所以需要定期进行 AOF 重写,给 AOF 日志进行瘦身。

如图所示:


redis持久化.png

快照

首先,redis是单线程的,(具体可见分析的单reactor主从多路复用模型),这个线程要同时负责多个客户端套接字的并发读写操作和内存数据结构的逻辑读写。
redis 还需要进行内存快照,内存快照要求 Redis 必须进行文件 IO 操作,而I/O操作一般都是比较慢的
同时持久化时,内存中的数据结构还在变

redis 快照的解决方案

使用操作系统的多进程 COW(Copy On Write)机制来实现快照持久化.

Redis 在持久化时会调用 glibc 的函数 fork 产生一个子进程,快照持久化完全交给子进程来处理,父进程继续处理客户端请求。子进程刚刚产生时,它和父进程共享内存里面的代码段和数据段。这时你可以把父子进程想象成一个连体婴儿,它们在共享身体。这是 Linux 操作系统的机制,为了节约内存资源,所以尽可能让它们共享起来。在进程分离的一瞬间,内存的增长几乎没有明显变化。

子进程做数据持久化,不会修改现有的内存数据结构,它只是对数据结构进行遍历读取,然后序列化写到磁盘中。但是父进程不一样,它必须持续服务客户端请求,然后对内存数据结构进行不间断的修改。
这个时候就会使用操作系统的 COW 机制来进行数据段页面的分离。数据段是由很多操作系统的页面组合而成,当父进程对其中一个页面的数据进行修改时,会将被共享的页面复制一份分离出来,然后对这个复制的页面进行修改。这时子进程相应的页面是没有变化的,还是进程产生时那一瞬间的数据。

随着父进程修改操作的持续进行,越来越多的共享页面被分离出来,内存就会持续增长。但是也不会超过原有数据内存的 2 倍大小。另外一个 Redis 实例里冷数据占的比例往往是比较高的,所以很少会出现所有的页面都会被分离,被分离的往往只有其中一部分页面。每个页面的大小只有 4KB(至于为什么会是4K,可见对linux磁盘与内存分析的文章),一个 Redis 实例里面一般都会有成千上万个页面。

子进程因为数据没有变化,它能看到的内存里的数据在进程产生的一瞬间就凝固了,再也不会改变,这也是为什么 Redis 的持久化叫“快照”的原因。接下来子进程就可以非常安心地遍历数据,进行序列化写磁盘了。

AOF

aof优点类似于Mysql的binlog,即AOF 日志存储的是 Redis 服务器的顺序指令序列,当然它只记录对内存进行修改的指令记录。

假设 AOF 日志记录了自 Redis 实例创建以来所有的修改性指令序列,那么就可以通过对一个空的 Redis 实例顺序执行所有的指令——也就是“重放”,来恢复 Redis 当前实例的内存数据结构的状态。

Redis 会在收到客户端修改指令后,进行参数校验、逻辑处理,如果没问题,就立即将该指令文本存储到 AOF 日志中,也就是说,先执行指令才将日志存盘。

此外

Redis 在长期运行的过程中,AOF 的日志会越变越长。如果实例宕机重启,重放整个 AOF 日志会非常耗时,导致长时间 Redis 无法对外提供服务。所以需要对 AOF 日志瘦身。

AOF重写

Redis 提供了 bgrewriteaof 指令用于对 AOF 日志进行瘦身。其原理就是开辟一个子进程对内存进行遍历,转换成一系列 Redis 的操作指令,序列化到一个新的 AOF 日志文件中。序列化完毕后再将操作期间发生的增量 AOF 日志追加到这个新的 AOF 日志文件中,追加完毕后就立即替代旧的 AOF 日志文件了,瘦身工作就完成了。

关于刷盘fsync

AOF 日志是以文件的形式存在的,当程序对 AOF 日志文件进行写操作时,实际上是将内容写到了内核为文件描述符分配的一个内存缓存中,然后内核会异步将脏数据刷回到磁盘的。
直接借用之前的图吧

Nio零拷贝.png

这对redis有什么影响?

这就意味着如果机器突然宕机,AOF 日志内容可能还没有来得及完全刷到磁盘中,这个时候就会出现日志丢失。那该怎么办?

Linux 的 glibc 提供了 fsync(int fd) 函数可以将指定文件的内容强制从内核缓存刷到磁盘。只要 Redis 进程实时调用 fsync 函数就可以保证 AOF 日志不丢失。但是 fsync 是一个磁盘 IO 操作,它很慢!如果 Redis 执行一条指令就要 fsync 一次,那么 Redis 高性能的地位就不保了。

redis 针对这个的处理机制

Redis 通常是每隔 1s 左右执行一次 fsync 操作,这个 1s 的周期是可以配置的。这是在数据安全性和性能之间做的一个折中,在保持高性能的同时,尽可能使得数据少丢失。

Redis 同样也提供了另外两种策略,一个是永不 fsync——让操作系统来决定何时同步磁盘,这样做很不安全,另一个是来一个指令就 fsync 一次——结果导致非常慢。

针对redis的持久化运维

快照是通过开启子进程的方式进行的,它是一个比较耗资源的操作。
1.遍历整个内存,大块写磁盘会加重系统负载.
2.AOF 的 fsync 是一个耗时的 IO 操作,它会降低 Redis 性能,同时也会增加系统 IO 负担。

所以通常Redis 的主节点是不会进行持久化操作,持久化操作主要在从节点进行。从节点是备份节点,没有来自客户端请求的压力,它的操作系统资源往往比较充沛。

但同样针对第二点也存在问题

如果出现网络分区,从节点长期连不上主节点,就会出现数据不一致的问题,特别是在网络分区出现的情况下,主节点一旦不小心宕机了,那么数据就会丢失,所以在生产环境要做好实时监控工作,保证网络畅通或者能快速修复。另外还应该再增加一个从节点以降低网络分区的概率,只要有一个从节点数据同步正常,数据也就不会轻易丢失。

redis混合持久化

重启 Redis 时,我们很少使用 rdb 来恢复内存状态,因为会丢失大量数据。我们通常使用 AOF 日志重放,但是重放 AOF 日志的性能相对 rdb 来说要慢很多,这样在 Redis 实例很大的情况下,启动需要花费很长的时间。
将 rdb 文件的内容和增量的 AOF 日志文件存在一起。这里的 AOF 日志不再是全量的日志,而是自持久化开始到持久化结束的这段时间发生的增量 AOF 日志,通常这部分 AOF 日志很小。

于是在 Redis 重启的时候,可以先加载 rdb 的内容,然后再重放增量 AOF 日志就可以完全替代之前的 AOF 全量文件重放,重启效率因此得到大幅提升。


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容