一、缓存系统
1.1 缓存处理流程
前台请求,后台先从缓存中取数据,取到直接返回结果,取不到时从数据库中取,数据库取到更新缓存,并返回结果,数据库也没取到,那直接返回空结果。
1.2 缓存系统需要解决的问题
设计一个缓存系统,不得不要考虑的问题就是:缓存穿透、缓存击穿与失效时的雪崩效应。
二、缓存穿透
2.1 简要描述
缓存穿透是指查找的数据在缓存和数据库中都不存在,导致每一次请求数据从缓存中都获取不到,而将请求打到数据库服务器,但数据库中也没有对应的数据,最后每一次请求都到数据库;如果在高并发场景或有人恶意攻击,就会导致后台数据库服务器压力增大,最终系统可能崩掉。如发起为id为“-1”的数据或id为特别大不存在的数据。这时的用户很可能是攻击者,攻击会导致数据库压力过大。来个直接点的图:
简要说明:
缓存Redis服务器颜色说明:绿色块代表有缓存数据,粉色块代表缓存中没有数据;绿色箭头代表直接从缓存中获取数据;黄色箭头代表穿过缓存从数据库中查数据,但不一定有。
流程大概如下:
1、大量客户端发起大量请求到服务器;
2、服务器代码逻辑将先经过缓存,如果有缓存数据(绿色部分),直接从缓存中获取数据数据返回;如果缓存中没有数据(粉色部分),请求就会直接打到数据库服务器(如黄色箭头)。
3、如果存在大量无缓存数据的请求,最终数据库将因为过大压力而崩掉,导致系统不可用。
2.2 常用解决措施
缓存空值:如果没有在数据库中获取到数据,可以将其对应键的空值进行缓存,并设置较短过期时间;优点:在过期时间内直接通过缓存返回空值;从而避免数据库压力;缺点:消耗Redis内存:如果是攻击者换着非常规的键值请求,如果每次都缓存到Redis中,大量的空数据也占内存空间;数据不一致:如果是正常数据,刚开始没有数据,然后将空值进行缓存,并设置短暂的过期时间;如果在过期时间内正常维护了对应的数据,此时取到值仍是空,并没有去数据库中获取新维护数据,导致数据获取不一致。
布隆过滤器:加一层过滤器进行拦截,判断请求对应的键是否在过滤器中,如果不在就直接返回,不去请求数据库,也不用缓存空值。而布隆过滤器采用bit位的形式标识对应键(每个键进行Hash过后都会得到具体的位置)是否存在,可以用极少的空间标识超大量的数据。缺点:布隆过滤器可以判断数据一定不在过滤器中,而对于存在的判断有误判率,因为Hash算法存在冲突的情况。
操作:
1、项目启动时将member表里的id一次性加载出来,循环通过布隆过滤器的bf.add
方法添加元素,如果有新member创建,则也调用bf.add
添加元素。
2、前端请求数据,先调用布隆过滤器的bf.exists
方法判断是否存在,如果存在则调用Redis缓存,如果缓存存在则直接返回,如果不存在再查数据库。
三、缓存雪崩
3.1 简要描述
缓存雪崩是指突然缓存层不可用,导致大量请求直接打到数据库,最终由于数据库压力过大可能导致系统崩掉。缓存层不可用指以下两方面:
- 缓存服务器宕机,系统将请求打到数据库;
- 缓存数据突然大范围集中过期失效,导致大量请求打到数据库重新加载数据;
简要说明:
缓存Redis服务器颜色说明:绿色块代表有缓存数据,粉色块代表缓存中没有数据;白色块代表大范围失效的缓存数据,绿色箭头代表直接从缓存中获取数据;黄色箭头代表穿过缓存从数据库中查数据。
流程大概如下:
1、大量客户端发起大量请求到服务器;
2、服务器代码逻辑将先经过缓存,如果有缓存数据(绿色部分),直接从缓存中获取数据数据返回;如果缓存过期(白色块部分),请求就会直接打到数据库服务器(如黄色箭头)。
3、如果存在大量热数据的请求,但热数据又大范围过期,最终数据库将因为过大压力崩掉,导致系统不可用。
3.2 常用解决措施
缓存预热:在高峰期还没到来时,提前将热数据加载到缓存中,避免高峰期来临时数据库压力过大。
均匀设置过期时间:针对不同的热点数据,将过期时间加上一个随机值,让过期时间不集中在一个点,从而减小很大部分数据库压力;
多级缓存:除了使用Redis缓存,还可以根据业务增加一些热点数据的其他缓存,比如内存缓存,可以将各级的缓存有效期分开,这种方式也能缓解数据库的压力;
限流、降级:如果压力过大,避免把系统搞崩,可以增加一些限流手段,不管是中间件还是消息队列等,主要保证系统的可用。
加互斥锁:目的就是加锁独占操作,让一个操作向缓存中重新加载数据,让请求操作等待,其实这样的体验不好,慎用。如果要用,要超级注意锁的性能和稳定性。
对于缓存层整体崩掉的情况:使用高可用架构,比如之前说到的主从复制、哨兵、集群,根据需求进行对应架构,保证缓存层不崩掉。
四、缓存击穿
4.1 简要描述
缓存击穿是指在超级热点数据突然过期,导致针对超级热点的数据请求在过期期间直接打到数据库,这样数据库服务器会因为某一超热数据导致压力过大而崩掉。超热数据:比如秒杀时的数据,某宝、某东、某多多这种平台的数据如果在秒杀时间段失效,请求量足矣让数据库崩掉。
和缓存雪崩不同的是, 缓存击穿指并发查同一条数据,缓存雪崩是不同数据都过期了,很多数据都查不到从而查数据库。
对缓存击穿的另外一种描述:
对于一些设置了过期时间的key,如果这些key可能会在某些时间点被超高并发地访问,是一种非常“热点”的数据。这个时候,需要考虑一个问题:缓存被“击穿”的问题,这个和缓存雪崩的区别在于这里针对某一key缓存,前者则是很多key。
缓存在某个时间点过期的时候,恰好在这个时间点对这个Key有大量的并发请求过来,这些请求发现缓存过期一般都会从后端DB加载数据并回设到缓存,这个时候大并发的请求可能会瞬间把后端DB压垮。
简要说明:
缓存Redis服务器颜色说明:绿色块代表有缓存数据,粉色块代表缓存中没有数据;白色圈代表超级热点缓存数据过期失效,绿色箭头代表直接从缓存中获取数据;黄色箭头代表穿过缓存从数据库中查数据。
流程大概如下:
1、大量客户端发起大量请求到服务器;
2、服务器代码逻辑将先经过缓存,如果有缓存数据(绿色部分),直接从缓存中获取数据数据返回;如果超热缓存数据过期(白色圈部分),请求就会直接打到数据库服务器(如黄色箭头)。
3、超级热点数据过期失效,如秒杀数据,如果在秒杀时段失效,最终数据库将因为过大压力崩掉,导致系统不可用。
注:这个只是针对超热点数据,而不是大范围数据。
4.2 常用解决措施
热点数据不过期:像这种超热数据就设置永不过期。避免过期失效让数据库压力过大而崩。
加二级缓存
加互斥锁:目的就是加锁,然后向缓存中重新加载数据,让请求等待,其实这样的体验不好,慎用。如果要用,要超级注意锁的性能和稳定性。
资料来源
Redis缓存穿透、缓存雪崩、缓存击穿好好说说
缓存穿透、缓存击穿、缓存雪崩区别和解决方案
缓存穿透,缓存击穿,缓存雪崩解决方案分析