从爬虫到用scikit-learn构建机器学习多元线性回归模型

一:前言

这是一个线性回归的学习笔记,数据源是我爱我家的北京朝阳区的房屋价格及其相关信息,有室、厅、大小、朝向、楼层层数、装修程度、单价、总价。然后利用scikit-learn 构建一个简单的多元线性回归模型并预测。介绍相关的sklearn函数使用和参数意义。
目的:练习pandas、sklearn等相关模块函数使用


二:运行环境

  • Python 3.6
  • jupyter notebook
  • scikit-learn 0.19.1
  • pandas 0.20.3

三:数据抓取

我爱我家-朝阳区 https://bj.5i5j.com/ershoufang/chaoyangqu/

抓取思路:查看当前地区房屋页面数量,然后循环抓取当页数据,本次抓取的数据有rooms halls size direction unit_price price,其实如果把距离地铁的距离加进去也是一个不错的特征,但是考虑到模型简单一点,就暂时没有加,后面如果练习的话可以考虑放进去训练。
下面是抓取部分的代码,把页面数填进去,数据量不大所以就循环抓取即可。
具体代码见:https://github.com/rieuse/Machine_Learning/blob/master/House_Regression

def get_house_data():
    for num in range(1, 299):
        url = f'https://bj.5i5j.com/ershoufang/chaoyangqu/n{num}/'
        print(url)
        s = requests.session()
        html = s.get(url, headers=headers).text
        content = etree.HTML(html).xpath('//*[@class="listCon"]')
        for item in content:
            desc = item.xpath('./div[1]/p[1]/text()')[0].replace(' ','')
            price = item.xpath('./div[1]/div[1]/p[1]/strong/text()')[0]
            unit_price = item.xpath('./div[1]/div[1]/p[2]//text()')[0][2:-4]
            rooms = desc[:1]
            halls = desc[2:3]
            size = re.search(r'(?<=·).+(?=平米·)', desc)[0]
            direction = re.search(r'(?<=平米·).{1,2}(?=·)', desc)
            if not direction:
                direction = ''
            else:
                direction = direction[0]
            height = re.search(r'(?<=·).{1}(?=楼层)', desc)[0]
            if '装' in desc:
                decoration = desc[-2:-1]
            else:
                decoration = ''
            data = {
                'rooms': rooms,
                'halls': halls,
                'size': size,
                'direction': direction,
                'height': height,
                'decoration': decoration,
                'unit_price': unit_price,
                'price': price
            }
            print(data)


四:利用sklearn 构建多元线性回归模型

(1)

下面的代码建议在jupyter notebook 上运行,这样对数据可视化会很方便。

import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
%matplotlib inline
row_df = pd.read_csv('house_price.csv')
df = row_df[row_df.iloc[:,1] !='多']
# 去除数据中房间数目是‘多’ 的部分
data_X = df[['rooms','halls','size','unit_price']]
data_y = df.price
# 选取指定的特征
X_train, X_test, y_train, y_test = train_test_split(data_X, data_y, test_size=0.3)
# 利用 train_test_split 把数据集分割成训练集和测试集
model = LinearRegression(fit_intercept=True, normalize=False, copy_X=True, n_jobs=1)
model.fit(X_train,y_train)
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
model.score(X_test,y_test)
# score: 0.94163368657645685
print(model.coef_)
print(model.intercept_)
# model.coef_输出线性方程的参数,model.intercept_输出线性方程的节距

上面选取了'rooms','halls','size','unit_price',这几个特征进去训练,最后的预测效果评分达到94.16% 如果去掉单价这个特征来训练,预测效果评分就会下降很多。

data_X = df[['rooms','halls','size']]
data_y = df.price
X_train, X_test, y_train, y_test = train_test_split(data_X, data_y, test_size=0.3)
model = LinearRegression(fit_intercept=True, normalize=True, copy_X=True, n_jobs=1)
model.fit(X_train,y_train)    # 训练模型
model.score(X_test,y_test)    # 获取模型效果评分
model.predict(np.array([3,1,90]).reshape(1, -1)) 
# out:array([ 648.07270425])

根据训练好的模型,我们就可以看看北京朝阳区的三室一厅,90平米这样的房子大致是多少钱了,输出结果是648.07万元。

(2) LinearRegression() 参数
参数 类型 默认值 说明
fit_intercept 布尔型 true 是否对训练数据进行中心化。如果该变量为false,则表明输入的数据已经进行了中心化,在下面的过程里不进行中心化处理;否则,对输入的训练数据进行中心化处理
normalize 布尔型 false 是否对数据进行标准化处理
copy_X 布尔型 true 是否对X复制,如果选择false,则直接对原数据进行覆盖。(即经过中心化,标准化后,是否把新数据覆盖到原数据上)
n_jobs 整型 1 计算时设置的任务个数(number of jobs)。如果选择-1则代表使用所有的CPU。对于 n_targets>1 且足够大规模的问题有加速作用。
(3) LinearRegression() 返回值:
名称 返回值 说明
coef_ 数组型变量, 形状为(n_features,)或(n_targets, n_features) 说明:对于线性回归问题计算得到的feature的系数。如果输入的是多目标问题,则返回一个二维数组(n_targets, n_features);如果是单目标问题,返回一个一维数组 (n_features,)。
intercept_ 数组型变量 线性模型中的独立项。例如这里的b: y = ax + b

五:总结

该项目代码以及数据源全部存放于 github.com/rieuse/Machine_Learning
会了爬虫就可以自己抓取喜欢的数据拿来分析数据和跑机器学习,非常方便。这次利用自己抓取的数据,练习了sklearn的线性回归模型。也同时看到了北京房价的恐怖,买房还需努力呀。抓取的数据特征有很多,利用更多的特征训练的模型效果就越好,预测就会更准。以后我在尝试一下利用这些特征最大化预测效果,或者使用其他的模型或者来训练本次的数据。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 221,695评论 6 515
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,569评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 168,130评论 0 360
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,648评论 1 297
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,655评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,268评论 1 309
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,835评论 3 421
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,740评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,286评论 1 318
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,375评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,505评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,185评论 5 350
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,873评论 3 333
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,357评论 0 24
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,466评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,921评论 3 376
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,515评论 2 359

推荐阅读更多精彩内容