如何设置线程池大小
线程池的线程数量设置过多会导致线程竞争激烈,如果线程数量设置过少的话,还会导致系统无法充分利用计算机资源。那么如何设置才不会影响系统性能呢?
线程池原理
在 HotSpot VM 的线程模型中,Java 线程被一对一映射为内核线程。Java 在使用线程执行程序时,需要创建一个内核线程;当该 Java 线程被终止时,这个内核线程也会被回收。
因此 Java 线程的创建与销毁将会消耗一定的计算机资源,从而增加系统的性能开销。
除此之外,大量创建线程同样会给系统带来性能问题,因为内存和 CPU 资源都将被线程抢占,如果处理不当,就会发生内存溢出、CPU 使用率超负荷等问题。
为了解决上述两类问题,Java 提供了线程池概念,对于频繁创建线程的业务场景,线程池可以创建固定的线程数量,并且在操作系统底层,轻量级进程将会把这些线程映射到内核。
线程池可以提高线程复用,又可以固定最大线程使用量,防止无限制地创建线程。当程序提交一个任务需要一个线程时,会去线程池中查找是否有空闲的线程,若有,则直接使用线程池中的线程工作,若没有,会去判断当前已创建的线程数量是否超过最大线程数量,如未超过,则创建新线程,如已超过,则进行排队等待或者直接抛出异常。
线程池框架 Executor
Java 最开始提供了 ThreadPool 实现了线程池,为了更好地实现用户级的线程调度,更有效地帮助开发人员进行多线程开发,Java 提供了一套 Executor 框架。
这个框架中包括了 ScheduledThreadPoolExecutor 和 ThreadPoolExecutor 两个核心线程池。前者是用来定时执行任务,后者是用来执行被提交的任务。鉴于这两个线程池的核心原理是一样的,下面我们就重点看看 ThreadPoolExecutor 类是如何实现线程池的。
public ThreadPoolExecutor(int corePoolSize,// 线程池的核心线程数量
int maximumPoolSize,// 线程池的最大线程数
long keepAliveTime,// 当线程数大于核心线程数时,多余的空闲线程
TimeUnit unit,// 时间单位
BlockingQueue<Runnable> workQueue,// 任务队列,用来储存等待执
ThreadFactory threadFactory,// 线程工厂,用来创建线程,一般默
RejectedExecutionHandler handler) // 拒绝策略,当提交的任务过
线程池有两个线程数的设置,一个为核心线程数,一个为最大线程数。
在创建完线程池之后,默认情况下,线程池中并没有任何线程,等到有任务来才创建线程去执行任务。
但有一种情况排除在外,就是调用 prestartAllCoreThreads() 或者 prestartCoreThread()方法的话,可以提前创建等于核心线程数的线程数量,这种方式被称为预热,在抢购系统中就经常被用到。
当创建的线程数等于 corePoolSize 时,提交的任务会被加入到设置的阻塞队列中。当队列满了,会创建线程执行任务,直到线程池中的数量等于 maximumPoolSize。
当线程数量已经等于 maximumPoolSize 时, 新提交的任务无法加入到等待队列,也无法创建非核心线程直接执行,我们又没有为线程池设置拒绝策略,这时线程池就会抛出 RejectedExecutionException 异常,即线程池拒绝接受这个任务。
当线程池中创建的线程数量超过设置的 corePoolSize,在某些线程处理完任务后,如果等待 keepAliveTime 时间后仍然没有新的任务分配给它,那么这个线程将会被回收。线程池回收线程时,会对所谓的“核心线程”和“非核心线程”一视同仁,直到线程池中线程的数量等于设置的 corePoolSize 参数,回收过程才会停止。
即使是 corePoolSize 线程,在一些非核心业务的线程池中,如果长时间地占用线程数量,也可能会影响到核心业务的线程池,这个时候就需要把没有分配任务的线程回收掉。可以通过 allowCoreThreadTimeOut 设置项要求线程池:将包括“核心线程”在内的,没有任务分配的所有线程,在等待 keepAliveTime 时间后全部回收掉。
计算线程数量
一般多线程执行的任务类型可以分为 CPU 密集型和 I/O 密集型,根据不同的任务类型,我们计算线程数的方法也不一样。
CPU 密集型任务:这种任务消耗的主要是 CPU 资源,可以将线程数设置为 N(CPU 核心数)+1,比 CPU 核心数多出来的一个线程是为了防止线程偶发的缺页中断,或者其它原因导致的任务暂停而带来的影响。一旦任务暂停,CPU 就会处于空闲状态,而在这种情况下多出来的一个线程就可以充分利用 CPU 的空闲时间。
当线程数量太小,同一时间大量请求将被阻塞在线程队列中排队等待执行线程,此时 CPU 没有得到充分利用;当线程数量太大,被创建的执行线程同时在争取 CPU 资源,又会导致大量的上下文切换,从而增加线程的执行时间,影响了整体执行效率。
I/O 密集型任务:这种任务应用起来,系统会用大部分的时间来处理 I/O 交互,而线程在处理 I/O 的时间段内不会占用 CPU 来处理,这时就可以将 CPU 交出给其它线程使用。因此在 I/O 密集型任务的应用中,我们可以多配置一些线程,具体的计算方法是 2N。
在平常的应用场景中,我们常常遇不到这两种极端情况,那么碰上一些常规的业务操作,比如,通过一个线程池实现向用户定时推送消息的业务,我们又该如何设置线程池的数量呢?
此时我们可以参考以下公式来计算线程数:
线程数 =N(CPU 核数)*(1+WT(线程等待时间)/ST(线程时间运行时间))
我们可以通过 JDK 自带的工具 VisualVM 来查看 WT/ST 比例
综合来看,我们可以根据自己的业务场景,从“N+1”和“2N”两个公式中选出一个适合的,计算出一个大概的线程数量,之后通过实际压测,逐渐往“增大线程数量”和“减小线程数量”这两个方向调整,然后观察整体的处理时间变化,最终确定一个具体的线程数量。