OpenFOAM SGS model

SGS kinetic energy k=\frac{1}{2}(\overline{{\widetilde{v}}^2}-{\widetilde{v}}^2), where \widetilde{v} is the filtered density weighted velocity.
The following assumptions for the SGS density weighted stress tensor \mathrm{B} and the filtered deviatoric part of the rate of strain tensor \widetilde{D}_D are used:
\mathrm{B}=\frac{2}{3}\overline{\rho}k\mathrm{I}-2\mu_B\widetilde{D}_D \tag{1} \widetilde{D}_D=\widetilde{D}-\frac{1}{3}(tr\widetilde{D}\mathrm{I}) \tag{2} \widetilde{D}=\frac{1}{2}(grad\widetilde{v}+grad\widetilde{v}^T) \tag{3} \mu_B=c_k\overline{\rho}\sqrt{k}\vartriangle \tag{4} where \mathrm{I} is the unit tensor, \overline{\rho} is the filtered density, \mu_Bis the SGS viscosity and \vartrianglerepresents the top-hat filter with a characteristic filter width estimated as the cubic root of the CV volume. An exact balance equation for k can be derived, but some terms must be modeled. Instead, following Fureby this balance equation can be replaced by the a posteriori modeled equation:
\partial_t(\overline{\rho}k)+div(\overline{\rho}\widetilde{v}k)=F_p+F_d-F_\varepsilon \tag{5} F_p=-B\cdot D,\ F_d=div((\mu_B+\mu)grad\ k),\ F_\varepsilon=c_\varepsilon\overline{\rho}k^{\frac{3}{2}}/\vartriangle where F_pis the production, F_ddiffusion and F_\varepsilondissipation terms, respectively.
The conventional Smagorinsky SGS model can be recovered from Eq. 5 by assuming local equilibrium, F_p=F_\varepsilon. Thus, the SGS kinetic energy can be computed from the following relation:B\cdot \widetilde{D}+c_\varepsilon\overline{\rho}k^{3/2}/\vartriangle=0 \tag{6}
Using Eq. 1 and introducing the coefficients a=\frac{c_\varepsilon}{\vartriangle},\ b=\frac{2}{3}tr\widetilde{D},\ c=-2c_k\vartriangle\widetilde{D}_D:\widetilde{D} \tag{7} The relation in Eq. 6 can be reformulated by the quadratic equation to the relation for k k=(\frac{-b+\sqrt{b^2-4ac}}{2a})^2\tag{8}The models constant are: c_k=0.02andc_\varepsilon=1.048. The relationship between the classical C_s constant and the default constants C_k and C_\varepsilon from the Smagorinsky model implementation in OpenFOAM is C_s=(c^3_k/c_\varepsilon)^{1/4}, which leads to a value C_s=0.053. This value is slightly lower than the minimum conventional limit C_s=0.065. It is worth noting that this relation can be recovered from the classical assumption for the eddy-viscosity \mu_B=(C_s\vartriangle)^2\overline{\rho}\|\widetilde{D}\| and Eq. 4.
The dynamic model for the k equation can be derived using the Germano identity \mathrm{L} with another filter kernel of width \overline{\vartriangle}=2\vartriangle. Again, one can find the theoretical background in the studies performed by Fureby. Here, we will concentrate on the model implementation only.
The model coefficient c_k can not be removed from filtering and hence, a variational formulation is used to evaluate this: c_k=\frac{\langle L_D\cdot M\rangle}{\langle M\cdot M\rangle}\tag{9} where M=\vartriangle(\overline{k^{1/2}\widetilde{D}}-2(K+\overline{k})^{1/2}\overline{\widetilde{D}}), L_D=(\overline{\widetilde{v}^2}-\overline{\widetilde{v}}^2)_D and K=\frac{1}{2}(\overline{\|\widetilde{v}\|^2}-\|\overline{\widetilde{v}}\|^2).
The second coefficient c_\varepsilon is defined as c_\varepsilon=\frac{\langle\zeta\cdot MM\rangle}{\langle MM\cdot MM\rangle}\tag{10} where \zeta=2\vartriangle c_k(\overline{k^{1/2}\|\widetilde{D}\|^2}-2(K+\overline{k})^{1/2}\|\overline{\widetilde{D}}\|^2) and MM=(K+\overline{k})^{3/2}/2\vartriangle-\overline{k^{3/2}}/\vartriangle.

Reference:Lysenko, D.A., I.S., E., K. E., R., 2012. Large-Eddy Simulation of the Flow Over a Circular Cylinder at Reynolds Number 3900 Using the OpenFOAM Toolbox. Flow Turbulence & Combustion 89, 491–518.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。