TensorFlow学习7:输入图片,预测结果

代码处理过程

1,模型的要求是黑底白字,但输入的图是白底黑字,所以需要对每个像素点的值改为255减去原值以得到互补的反色
2,对图片做二值化处理
3,把图片形状拉成1行784列,并把值变成浮点型(要求像素点是0-1之间的浮点数)
4,计算求得输出y,y的最大值所对应的列表索引号就是预测结果

示例代码

#coding:utf-8
#将符合神经网络输入要求的图片喂给复现的神经网络模型,输出预测值
def restore_model(testPicArr):
    #创建一个默认图,在该图中执行以下操作
    with tf.Graph().as_default() as tg:
        x=tf.placeholder(tf.float32,[None,mnist_forword.INPUT_NONE])
        y=mnist_forword.mnist_forword(x,None)
        #得到概率最大的预测值
        preValue=tf.argmax(y,1)

        #实现滑动平均模型,参数MOVING_AVERAGE_DECAY用于控制模型更新的速度
        #训练过程中会对每一个变量维护一个影子变量,这个影子变量的初始值
        #就是相应变量的初始值,每次变量更新时,影子变量就会随之更新
        variable_averages=tf.train.ExponentialMovingAverage(mnist_backward.MOVING_AVERAGE_DECAY)
        variable_to_restore=variable_averages.variable_to_restore()
        saver=tf.train.Saver(variable_to_restore)

        with tf.session() as sess:
            #通过checkpoint文件定位到最新保存的模型
            ckpt=tf.train.get_checkpoint_state(mnist_backward.MODEL_SAVE_PATH)
            if ckpt and ckpt.model_checkpoint_path:
                saver.restore(sess,ckpt.model_checkpoint_path)

                preValue=sess.run(preValue,feed_dict={x:testPicArr})
                return preValue
            else:
                print("No checkpoint file found")
                return -1

#预处理函数,包括resize,转变灰度图,二值化操作
def pre_pic(picName):
    img=Image.open(picName)
    prIm=img.resize((28,28),Image.ANTIALIAS)
    im_arr=np.array(reIm.convert('L'))
    #设定合理的阙值
    threshold=50
    for i in range(28):
        for j in range(28):
            im_arr[i][j]=255-im_arr[i][j]
            if(im_arr[i][j]<threshold):
                im_arr[i][j]=0
            else:
                im_arr[i][j]=255
    nm_arr=im_arr.reshape([1,784])
    nm_arr=nm_arr.astype(np.float32)
    img_ready=np.multiply(nm_arr,1.0/255.0)

    return img_ready

参考:人工智能实践:Tensorflow笔记

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,099评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,828评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,540评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,848评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,971评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,132评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,193评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,934评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,376评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,687评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,846评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,537评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,175评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,887评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,134评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,674评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,741评论 2 351

推荐阅读更多精彩内容