学习笔记TF009:对数几率回归

logistic函数,也称sigmoid函数,概率分布函数。给定特定输入,计算输出"success"的概率,对回题回答"Yes"的概率。接受单个输入。多维数据或训练集样本特征,可以用线性回归模型表达式合并成单值。

损失函数可以使用平方误差。训练集"Yes"代表100%概率或输出值1的概率。损失刻画特定样本模型分配小于1值概率。"No"概率值0。损失是模型分配样本概率值并取平方。平方误差惩罚与损失同数量级情形。输出与期望相差太远,交叉熵(cross entropy)输出更大值(惩罚)。模型期望输出"Yes"样本预测概率接近0时,罚项值增长到接近无穷大。训练完,模型不可能做出这样的错误预测。TensorFlow提供单个优化步骤sigmoid输出计算交叉熵。

信息论,符号字符串每个字符出现概率已知,用香农熵估计字符串每个符号编码所需平均最小位数。符号编码,如果假设其他概率非真实概率,符号编码长度更大。交叉熵以次优编码方案计算同字符串编码平均最小位数。损失函数期望输出概率分布,实际值100%和0,将自定概率作为模型计算输出。sigmoid函数输出概率值。当真实概率等于自定概率,交叉熵值最小。交叉熵越接近熵,自定概率是真实概率更好逼近。模型输出与期望输出越接近,交叉熵越小。

从csv文件读取数据,加载解析,创建批次读取张量多行数据,提升推断计算效率。tf.decode_csv() Op将字符串(文本行)转换到指定默认值张量列元组,为每列设置数据类型。读取文件,加载张量batch_size行。属性数据(categorical data),推断模型需要把字符串特征转换为数值型特征。每个属性特征扩展为N维布尔型特征,每个可能取值对应一维。具备属性相应维度取值1。模型对每个可能取值独立加权。单个变量表示只可能两种值属性。所有特征排列矩阵,矩阵转置,每行一样本,每列一特征。输入,调用read_csv,转换读取数据,tf.equal方法检查属性值与常量值是否相等,tf.to_float方法将布尔值转换成数值。tf.stack方法打包所有布尔值进单个张量。

训练,度量准确率,正确预测样本总数占全部样本比例。样本输出大于0.5转换为正回答。tf.equal比较预测结果与实际值是否相等。tf.reduce_mean统计所有正确预测样本数,除以批次样本总数,得到正确预测百分比。

import tensorflow as tf
import os
#参数变量初始化
W = tf.Variable(tf.zeros([5, 1]), name="weights")#变量权值
b = tf.Variable(0., name="bias")#线性函数常量,模型偏置
def combine_inputs(X):#输入值合并
    print "function: combine_inputs"
    return tf.matmul(X, W) + b
def inference(X):#计算返回推断模型输出(数据X)
    print "function: inference"
    return tf.sigmoid(combine_inputs(X))#调用概率分布函数
def loss(X, Y):#计算损失(训练数据X及期望输出Y)
    print "function: loss"
    return tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=combine_inputs(X), labels=Y))#求平均值
def read_csv(batch_size, file_name, record_defaults):#从csv文件读取数据,加载解析,创建批次读取张量多行数据
    filename_queue = tf.train.string_input_producer([os.path.join(os.getcwd(), file_name)])
    reader = tf.TextLineReader(skip_header_lines=1)
    key, value = reader.read(filename_queue)
    decoded = tf.decode_csv(value, record_defaults=record_defaults)#字符串(文本行)转换到指定默认值张量列元组,为每列设置数据类型
    return tf.train.shuffle_batch(decoded, batch_size=batch_size, capacity=batch_size * 50, min_after_dequeue=batch_size)#读取文件,加载张量batch_size行
def inputs():#读取或生成训练数据X及期望输出Y
    print "function: inputs"
    #数据来源:https://www.kaggle.com/c/titanic/data
    #模型依据乘客年龄、性别、船票等级推断是否能够幸存
    passenger_id, survived, pclass, name, sex, age, sibsp, parch, ticket, fare, cabin, embarked = \
        read_csv(100, "train.csv", [[0.0], [0.0], [0], [""], [""], [0.0], [0.0], [0.0], [""], [0.0], [""], [""]])
    #转换属性数据
    is_first_class = tf.to_float(tf.equal(pclass, [1]))#一等票
    is_second_class = tf.to_float(tf.equal(pclass, [2]))#二等票
    is_third_class = tf.to_float(tf.equal(pclass, [3]))#三等票
    gender = tf.to_float(tf.equal(sex, ["female"]))#性别,男性为0,女性为1

    features = tf.transpose(tf.stack([is_first_class, is_second_class, is_third_class, gender, age]))#所有特征排列矩阵,矩阵转置,每行一样本,每列一特征
    survived = tf.reshape(survived, [100, 1])
    return features, survived
def train(total_loss):#训练或调整模型参数(计算总损失)
    print "function: train"
    learning_rate = 0.01
    return tf.train.GradientDescentOptimizer(learning_rate).minimize(total_loss)
def evaluate(sess, X, Y):#评估训练模型
    print "function: evaluate"
    predicted = tf.cast(inference(X) > 0.5, tf.float32)#样本输出大于0.5转换为正回答
    print sess.run(tf.reduce_mean(tf.cast(tf.equal(predicted, Y), tf.float32)))#统计所有正确预测样本数,除以批次样本总数,得到正确预测百分比
#会话对象启动数据流图,搭建流程
with tf.Session() as sess:
    print "Session: start"
    tf.global_variables_initializer().run()
    X, Y = inputs()
    total_loss = loss(X, Y)
    train_op = train(total_loss)
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)
    training_steps = 1000#实际训练迭代次数
    for step in range(training_steps):#实际训练闭环
        sess.run([train_op])
        if step % 10 == 0:#查看训练过程损失递减
            print str(step)+ " loss: ", sess.run([total_loss])
    print str(training_steps) + " final loss: ", sess.run([total_loss])
    evaluate(sess, X, Y)#模型评估
    import time
    time.sleep(5)
    coord.request_stop()
    coord.join(threads)
    sess.close()

参考资料:
《面向机器智能的TensorFlow实践》

欢迎加我微信交流:qingxingfengzi
我的微信公众号:qingxingfengzigz
我老婆张幸清的微信公众号:qingqingfeifangz

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,254评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,875评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,682评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,896评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,015评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,152评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,208评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,962评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,388评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,700评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,867评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,551评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,186评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,901评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,689评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,757评论 2 351

推荐阅读更多精彩内容