Day6—小辛—学习R包

安装和加载R包

1.镜像设置

你还在每次配置Rstudio的下载镜像吗?

2.安装

install.packages(“包”)
BiocManager::install(“包”)

取决于你要安装的包存在于CRAN网站还是Biocductor

3.加载

library(包)
require(包)

dplyr五个基础函数

iris
| 花萼长度 花萼宽度 花瓣长度 花瓣宽度
物种 |
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
test <- iris[c(1:2,51:52,101:102),]为例

1.新增列

mutate()
mutate(test, new = Sepal.Length * Sepal.Width)

2.按列筛选

select()

(1)按列号筛选

select(test,1)
select(test,c(1,5))
select(test,Sepal.Length)

(2)按列名筛选

select(test, Petal.Length, Petal.Width)

vars <- c("Petal.Length", "Petal.Width")
select(test, one_of(vars))

3.筛选行

.filter()

`filter(test, Species == "setosa"&Sepal.Length > 5 )
filter(test, Species %in% c("setosa","versicolor"))

4.按某1列或某几列对整个表格进行排序

arrange()

arrange(test, Sepal.Length)#默认从小到大排序
arrange(test, desc(Sepal.Length))#用desc从大到小
arrange(test, Sepal.Length, desc(Sepal.Width))

5.汇总

summarise()

summarise(test, mean(Sepal.Length), sd(Sepal.Length))# 计算Sepal.Length的平均值和标准差
# 先按照Species分组,计算每组Sepal.Length的平均值和标准差
group_by(test, Species)
summarise(group_by(test, Species),mean(Sepal.Length), sd(Sepal.Length))

dplyr两个实用技能

1:管道操作

%>% (cmd/ctr + shift + M)

(加载任意一个tidyverse包即可用管道符号)

test %>% 
  group_by(Species) %>% 
  summarise(mean(Sepal.Length), sd(Sepal.Length))

2:count统计某列的unique值

count(test,Species)

dplyr处理关系数据

  • 准备工作:即将2个表进行连接
options(stringsAsFactors = F)

test1 <- data.frame(x = c('b','e','f','x'), 
                    z = c("A","B","C",'D'),
                    stringsAsFactors = F)
test1

test2 <- data.frame(x = c('a','b','c','d','e','f'), 
                    y = c(1,2,3,4,5,6),
                    stringsAsFactors = F)
test2 

1.內连,取交集

inner_join

inner_join(test1, test2, by = "x")

2.左连

left_join

left_join(test1, test2, by = 'x')
left_join(test2, test1, by = 'x')

3.全连

full_join

full_join( test1, test2, by = 'x')

4.半连接:返回能够与y表匹配的x表所有记录

semi_join

semi_join(x = test1, y = test2, by = 'x')

5.反连接:返回无法与y表匹配的x表的所记录

anti_join

anti_join(x = test2, y = test1, by = 'x')

6.简单合并

test1 <- data.frame(x = c(1,2,3,4), y = c(10,20,30,40))
test1

test2 <- data.frame(x = c(5,6), y = c(50,60))
test2

test3 <- data.frame(z = c(100,200,300,400))
test3

bind_rows(test1, test2)

bind_cols(test1, test3)
18.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,928评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,192评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,468评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,186评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,295评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,374评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,403评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,186评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,610评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,906评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,075评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,755评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,393评论 3 320
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,079评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,313评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,934评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,963评论 2 351

推荐阅读更多精彩内容