20210401-DeepPerpose

A Deep Learning Library for Compound and Protein Modeling DTI, Drug Property, PPI, DDI, Protein Function Prediction

文章链接

github-DeepPerpose

作者开发的一种处理药物与蛋白功能预测的通用框架。

一、数据

Drug:['Cc1ccc(CNS(=O)(=O)c2ccc(s2)S(N)(=O)=O)cc1', ...],
Protein:['MSHHWGYGKHNGPEHWHKDFPIAKGERQSPVDIDTH...', ...]

二、处理的生物学问题:
  1. DTI (Drug Target Interaction),预测药物与蛋白是否有关系。
  2. Drug Property Prediction,药物性能预测,可是回归问题,可是分类问题。
  3. DDI (Drug-Drug Interaction Prediction)
  4. Protein-Protein Interaction Prediction
  5. Protein Function Prediction
  6. 药物重定位,例如
    Antiviral Drugs Repurposing for SARS-CoV2 3CLPro,Given a new target sequence (e.g. SARS-CoV2 3CL Protease), retrieve a list of repurposing drugs from a curated drug library of 81 antiviral drugs.
    Given a new target sequence (e.g. SARS-CoV 3CL Pro), training on new data (AID1706 Bioassay), and then retrieve a list of repurposing drugs from a proprietary library (e.g. antiviral drugs). The model can be trained from scratch or finetuned from the pretraining checkpoint!
    作者对以上问题,提供了Demo数据与使用范例
三、模型
m_btaa1005f1.png
(1) 数据编码:
  • Drug 八种方式
  1. Multi-Layer Perceptrons (MLP) on Morgan,

Morgan Fingerprint 1 is a 1024-length bits vector that encodes circular radius-2 substructures. A multi-layer perceptron is then applied on the binary fingerprint vector

  1. PubChem,

Pubchem 2 is a 881-length bits vector, where each bit corrresponds to a hand-crafted important substructures. A multi-layer perceptron is then applied on top of the vector

  1. Daylight

Daylight is a 2048-length vector that encodes path-based substructures. A multi-layer perceptron is then applied on top of the vector.

  1. RDKit 2D Fingerprint;

RDKit-2D is a 200-length vector that describes global pharmacophore descriptor. It is normalized to make the range of the features in the same scale using cumulative density function fit given a sample of the molecules.

  1. Convolutional Neural Network (CNN) on SMILES strings;

CNN 3 is a multi-layer 1D convolutional neural network. The SMILES characters are first encoded with an embedding layer and then fed into the CNN convolutions. A global max pooling layer is then attached and a latent vector describe the compound is generated.

6.Recurrent Neural Network (RNN) on top of CNN;

CNN+RNN 4,5 attaches a bidirectional recurrent neural network (GRU or LSTM) on top of the 1D CNN output to leverage the more global temporal dimension of compound. The input is also the SMILES character embedding.

  1. transformer encoders on substructure fingerprints;

Transformer 6 uses a self-attention based transformer encoder that operates on the sub-structure partition fingerprint

  1. message passing graph neural network on molecular graph

MPNN 8 is a message-passing graph neural network that operate on the compound molecular graph. It transmits latent information among the atoms and edges, where the input features incorporate atom/edge level chemical descriptors and the connection message. After obtaining embedding vector for each atom and edge, a readout function (mean/sum) is used to obtain a (molecular) graph-level embedding vector.

  • Protein 七种方式
  1. AAC

is a 8,420-length vector where each position correpsonds to an amino acid k-mers and k is up to 3.

  1. PseAAC

includes the protein hydrophobicity and hydrophilicity patterns information in addition to the composition.

  1. Conjoint Triad

uses the continuous three amino acids frequency distribution from a hand-crafted 7-letter alphabet.

  1. Quasi Sequence

takes account for the sequence order effect using a set of sequence-order-coupling numbers.

  1. CNN

is a multi-layer 1D convolutional neural network. The target amino acid is decomposed to each individual character and is encoded with an embedding layer and then fed into the CNN convolutions. It follows a global max pooling layer.

  1. CNN+RNN

attaches a bidirectional recurrent neural network (GRU or LSTM) on top of the 1D CNN output to leverage the sequence order information.

  1. Transformer

uses a self-attention based transformer encoder that operates on the sub-structure partition fingerprint 7 of proteins. Since transformer’s computation time and memory is quadratic on the input size, it is computational infeasible to treat each amino acid symbol as a token. The partition fingerprint decomposes amino acid sequence into protein substructures of moderate sized such as motifs and then each of the partition is considered as a token and fed into the model.

(2)Loss

For binding affinity score prediction, it uses mean squared error (MSE) loss
For binary interaction prediction, it uses binary cross entropy (BCE) loss

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,402评论 6 499
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,377评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,483评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,165评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,176评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,146评论 1 297
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,032评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,896评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,311评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,536评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,696评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,413评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,008评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,659评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,815评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,698评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,592评论 2 353

推荐阅读更多精彩内容

  • 夜莺2517阅读 127,718评论 1 9
  • 版本:ios 1.2.1 亮点: 1.app角标可以实时更新天气温度或选择空气质量,建议处女座就不要选了,不然老想...
    我就是沉沉阅读 6,887评论 1 6
  • 我是黑夜里大雨纷飞的人啊 1 “又到一年六月,有人笑有人哭,有人欢乐有人忧愁,有人惊喜有人失落,有的觉得收获满满有...
    陌忘宇阅读 8,535评论 28 53
  • 兔子虽然是枚小硕 但学校的硕士四人寝不够 就被分到了博士楼里 两人一间 在学校的最西边 靠山 兔子的室友身体不好 ...
    待业的兔子阅读 2,601评论 2 9