安全加密方式总结二

五、数字签名和数字证书

1、数字签名

5.1.1概述

数字签名的作用在于用来鉴别接受方接受到的信息是否是发送方发送过来的,并且中间是否又被篡改过。

关于四中的流程,我们假定这样一种情况,
客户端使用公钥对文件进行加密,然后向服务器传输密文,但是传输的过程中,被同样有公钥的黑客截获(公钥任何人都可以拥有),这个时候黑客利用自己的公钥,重新加密一封密文,传输给服务器。如此一来,服务器收到的密文不是客户端传过来的,而是黑客传过来的。但是服务器并不知道。如此一来,就产生了文件被掉包。

数字签名的作用就是用来校验文件是否在传输过程中是否被篡改和掉包。具体实现方式有两种:无保密机制签名保密机制签名

5.1.2无保密机制签名

客户端在对明文加密之前,先使用摘要算法,对明文生成摘要,然后把摘要使用非对称加密的方式进行加密,然后传输给服务器,服务器收到摘要密文后使用私钥进行解密,然后把收到的文件明文进行摘要算法,得到摘要后和客户端传输过来的密文进行比对。就可以知道,文件是否被替换。

5.1.2流程图

最常用的摘要算法叫做MD5(Message Digest 5),它的作者R.L.

5.1.3保密机制签名

上面的加密方式中,只是实现了使用签名如何对校验传输数据是否被篡改和替换,但是传输的还是明文,如果要想对传输明文进行加密成密文,是否也要使用RSA加密算法呢?

这种做法很不可取,因为RSA加密算法效率很低,所需加密的明文越长,效率会呈指数下降。那么应该怎么办呢?

方法就是:

使用对称加密的方式对明文加密,然后将对称加密的秘钥使用RSA加密,然后在对密文生成摘要,然后传输。
具体加密步骤为:

(1)发送方选择一个对称加密算法(比如DES)和一个对称密钥对报文进行加密;

(2)发送方用接收方的公钥和RSA算法对第1步中的对称密钥进行加密,并且将加密后的对称密钥附加在密文中;

(3)发送方使用一个摘要算法从第2步的密文中得到报文摘要,然后用RSA算法和发送方的私钥对此报文摘要进行加密,这就是发送方的数字签名;

(4)将第3步得到的数字签名封装在第2步的密文后,并通过网络发送给接收方;

(5)接收方使用RSA算法和发送方的公钥对收到的数字签名进行解密,得到一个报文摘要;

(6)接收方使用相同的摘要算法,从接收到的报文密文中计算出一个报文摘要;

(7)如果第5步和第6步的报文摘要是相同的,就可以确认密文没有被篡改,并且是由指定的发送方签名发送的;

(8)接收方使用RSA算法和接收方的私钥解密出对称密钥;

(9)接收方使用对称加密算法(比如DES)和对称密钥对密文解密,得到原始报文。

2、数字证书

5.2.1. 概述

数字证书就是互联网通讯中标志通讯各方身份信息的一串数字,提供了一种在Internet 上验证通信实体身份的方式,数字证书不是数字身份证,而是身份认证机构盖在数字身份证上的一个章或印(或者说加在数字身份证上的一个签名)。它是由权威机构——CA 机构,又称为证书授权(Certificate Authority)中心发行的,人们可以在网上用它来识别对方的身份。

5.2.2. 应用场景
  • 交易者身份的确定性、不可否认性、不可修改性
  • 对应用进行签名认证(例如Android 的apk)
5.2.3. 数字证书格式
数字证书格式

数字证书的格式普遍采用的是X.509V3 国际标准,一个标准的X.509 数字证书包含以下一些内容:

  • 证书的版本信息
  • 证书的序列号,每个证书都有一个唯一的证书序列号
  • 证书所使用的签名算法
  • 证书的发行机构名称,命名规则一般采用X.500 格式
  • 证书的有效期,通用的证书一般采用UTC 时间格式,它的计时范围为1950-2049
  • 证书所有人的名称,命名规则一般采用X.500 格式
  • 证书所有人的公开密钥
  • 证书发行者对证书的签名
5.2.4. 数字证书原理
数字证书原理

数字证书是安全领域里的终极武器,SSL 通信协议里最核心的东西就是数字证书。他涉及到前面提到的所有知识:对称加密、非对称加密、消息摘要、数字签名等。

数字证书可以通过java 自带的KeyTool 工具生成,生成后的数字证书一般保管在KeyStore 里。KeyStore可以叫做秘钥仓库。

秘钥仓库可以保管3 种类型的数据:KeyStore.PrivateKeyEntry(非对称机密里的私钥)、KeyStore.SecretKeyEntry (对称加密里的秘钥)、KeyStore.TrustedCertificateEntry(受信任的证书)

5.2.5.补充
  • 签名证书

由权威颁发机构颁发给服务器或者个人用于证明自己身份的东西,默认客户端都是信任的。主要目的是用来加密和保证数据的完整性和不可抵赖性
例如根证书机构Symantec 颁发给百度的就是签名证书,是受信任的。

baidu
  • 自签名证书

由服务器自己颁发给自己,用于证明自己身份的东西,非权威颁发机构发布,默认客户端都是不信任的,主要目的是用来加密和保证数据的完整性和不可抵赖性,与签名证书相同.
例如中铁集团(SRCA)办法给12306 的证书就是自签名证书,自己给自己颁发的。

12306

六、其他问题

关于 四 中的流程还有一些潜在的小问题。

【问题1】

上面的通信过程中说到,在检查完证书后,“客户”发送一个随机的字符串给“服务器”去用私钥加密,以便判断对方是否真的持有私钥。但是有一个问题,“黑客”也可以发送一个字符串给“服务器”去加密并且得到加密后的内容,这样对于“服务器”来说是不安全的,因为黑客可以发送一些简单的有规律的字符串给“服务器”加密,从而寻找加密的规律,有可能威胁到私钥的安全。所以说,“服务器”随随便便用私钥去加密一个来路不明的字符串并把结果发送给对方是不安全的。

〖解决方法〗

每次收到“客户”发来的要加密的的字符串时,“服务器”并不是真正的加密这个字符串本身,而是把这个字符串进行一个hash计算,加密这个字符串的hash值(不加密原来的字符串)后发送给“客户”,“客户”收到后解密这个hash值并自己计算字符串的hash值然后进行对比是否一致。也就是说,“服务器”不直接加密收到的字符串,而是加密这个字符串的一个hash值,这样就避免了加密那些有规律的字符串,从而降低被破解的机率。“客户”自己发送的字符串,因此它自己可以计算字符串的hash值,然后再把“服务器”发送过来的加密的hash值和自己计算的进行对比,同样也能确定对方是否是“服务器”。

【问题2】

在双方的通信过程中,“黑客”可以截获发送的加密了的内容,虽然他无法解密这个内容,但是他可以捣乱,例如把信息原封不动的发送多次,扰乱通信过程。

〖解决方法〗

可以给通信的内容加上一个序号或者一个随机的值,如果“客户”或者“服务器”接收到的信息中有之前出现过的序号或者随机值,那么说明有人在通信过程中重发信息内容进行捣乱,双方会立刻停止通信。

【问题3】

在双方的通信过程中,“黑客”除了简单的重复发送截获的消息之外,还可以修改截获后的密文修改后再发送,因为修改的是密文,虽然不能完全控制消息解密后的内容,但是仍然会破坏解密后的密文。因此发送过程如果黑客对密文进行了修改,“客户”和“服务器”是无法判断密文是否被修改的。

〖解决方法〗
在每次发送信息时,先对信息的内容进行一个hash计算得出一个hash值,将信息的内容和这个hash值一起加密后发送。接收方在收到后进行解密得到明文的内容和hash值,然后接收方再自己对收到信息内容做一次hash计算,与收到的hash值进行对比看是否匹配,如果匹配就说明信息在传输过程中没有被修改过。如果不匹配说明中途有人故意对加密数据进行了修改,立刻中断通话过程后做其它处理。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,163评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,301评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,089评论 0 352
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,093评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,110评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,079评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,005评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,840评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,278评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,497评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,667评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,394评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,980评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,628评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,649评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,548评论 2 352

推荐阅读更多精彩内容