巧借haarcascade_frontalface_alt2.xml完成人脸检测

opencv中自带了haar人脸特征分类器。

1.1 image如果为彩色图:image.shape[0] [1] [2] (水平、垂直像素、通道数)
1.2将图片变为灰度图
1.3它可以检测出图片中所有的人脸,并将人脸用vector保存各个人脸的坐标、大小(用矩形表示)
1.4调整scaleFactor参数的大小,可以增加识别的灵敏度,推荐1.1
1.5CASC_PATH = 你的haarcascade_frontalface_alt2.xml文件地址
def format_image(image):
    # image如果为彩色图:image.shape[0][1][2](水平、垂直像素、通道数)
    if len(image.shape) > 2 and image.shape[2] == 3:
        # 将图片变为灰度图
        image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        # 它可以检测出图片中所有的人脸,并将人脸用vector保存各个人脸的坐标、大小(用矩形表示)
        # 调整scaleFactor参数的大小,可以增加识别的灵敏度,推荐1.1
        #CASC_PATH = 你的haarcascade_frontalface_alt2.xml文件地址
        CASC_PATH = 'E:/miniconda/envs/lstm/Lib/site-packages/cv2/data/haarcascade_frontalface_alt2.xml' #
        cascade_classifier = cv2.CascadeClassifier(CASC_PATH)
        faces = cascade_classifier.detectMultiScale(image, scaleFactor=1.1, minNeighbors=5)
    # 如果图片中没有检测到人脸,则返回None
    if not len(faces) > 0:
        return None, None
    # max_are_face包含了人脸的坐标,大小
    max_are_face = faces[0]
    # 在所有人脸中选一张最大的脸
    for face in faces:
        if face[2] * face[3] > max_are_face[2] * max_are_face[3]:
            max_are_face = face

    # 这两步可有可无
    face_coor = max_are_face
    image = image[face_coor[1]:(face_coor[1] + face_coor[2]), face_coor[0]:(face_coor[0] + face_coor[3])]
    # 调整图片大小,变为48*48
    try:
        image = cv2.resize(image, (48, 48), interpolation=cv2.INTER_CUBIC)
    except Exception:
        print("problem during resize")
        return None, None

    return image, face_coor

对接到视频中,使用cv2.VideoCapture(0)

capture = cv2.VideoCapture(0)
    fps = 0.0
    while (True):
        t1 = time.time()
        # 读取某一帧
        ref, frame = capture.read()
        # 格式转变,BGRtoRGB
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        # 转变成Image
        # 进行检测
        (p_image, face_coor) = format_image(frame)
        if face_coor is not None:
            # 获取人脸的坐标,并用矩形框出
            [x, y, w, h] = face_coor
            cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 1)
        # time.sleep(0.2)
        frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
        # fps = int(round(capture.get(cv2.CAP_PROP_FPS)))
        fps = (fps + (1. / (time.time() - t1)))/2
        frame = cv2.putText(frame, "fps= %.2f" % (fps), (0, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
        cv2.imshow("video", frame)
        c = cv2.waitKey(1) & 0xff
        if c == 27:
            capture.release()
            break
    capture.release()
    cv2.destroyAllWindows()

整体代码:

import time
import cv2

def format_image(image):
    # image如果为彩色图:image.shape[0][1][2](水平、垂直像素、通道数)
    if len(image.shape) > 2 and image.shape[2] == 3:
        # 将图片变为灰度图
        image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        # 它可以检测出图片中所有的人脸,并将人脸用vector保存各个人脸的坐标、大小(用矩形表示)
        # 调整scaleFactor参数的大小,可以增加识别的灵敏度,推荐1.1
        #CASC_PATH = 你的haarcascade_frontalface_alt2.xml文件地址
        CASC_PATH = 'E:/miniconda/envs/lstm/Lib/site-packages/cv2/data/haarcascade_frontalface_alt2.xml' #
        cascade_classifier = cv2.CascadeClassifier(CASC_PATH)
        faces = cascade_classifier.detectMultiScale(image, scaleFactor=1.1, minNeighbors=5)
    # 如果图片中没有检测到人脸,则返回None
    if not len(faces) > 0:
        return None, None
    # max_are_face包含了人脸的坐标,大小
    max_are_face = faces[0]
    # 在所有人脸中选一张最大的脸
    for face in faces:
        if face[2] * face[3] > max_are_face[2] * max_are_face[3]:
            max_are_face = face

    # 这两步可有可无
    face_coor = max_are_face
    image = image[face_coor[1]:(face_coor[1] + face_coor[2]), face_coor[0]:(face_coor[0] + face_coor[3])]
    # 调整图片大小,变为48*48
    try:
        image = cv2.resize(image, (48, 48), interpolation=cv2.INTER_CUBIC)
    except Exception:
        print("problem during resize")
        return None, None

    return image, face_coor


if __name__ == "__main__":
    capture = cv2.VideoCapture(0)
    fps = 0.0
    while (True):
        t1 = time.time()
        # 读取某一帧
        ref, frame = capture.read()
        # 格式转变,BGRtoRGB
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        # 转变成Image
        # 进行检测
        (p_image, face_coor) = format_image(frame)
        if face_coor is not None:
            # 获取人脸的坐标,并用矩形框出
            [x, y, w, h] = face_coor
            cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 1)
        # time.sleep(0.2)
        frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
        # fps = int(round(capture.get(cv2.CAP_PROP_FPS)))
        fps = (fps + (1. / (time.time() - t1)))/2
        frame = cv2.putText(frame, "fps= %.2f" % (fps), (0, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
        cv2.imshow("video", frame)
        c = cv2.waitKey(1) & 0xff
        if c == 27:
            capture.release()
            break
    capture.release()
    cv2.destroyAllWindows()


©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,039评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,223评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,916评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,009评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,030评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,011评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,934评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,754评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,202评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,433评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,590评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,321评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,917评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,568评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,738评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,583评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,482评论 2 352

推荐阅读更多精彩内容