满月抛江第三难
基因集的概念
GSEA全称Gene Set Enrichment Analysis,GSVA全称Gene Set Variation Analysis,它们都是基于基因集开展的分析,因此我们先要了解基因集的定义。基因集顾名思义就是一些基因的集合,任何一些基因放在一起都可以叫做基因集,但是我们用来分析的基因集要求有一定的生物学意义。最常见的基因集数据库如GO与KEGG,它们一个按照基因本体论将基因分门别类,一个按照代谢通路将相关基因集合在一起。除此之外我们还可以按转录因子调控网络、共表达网络、定义生物状态的marker基因列表等把基因集合成有一定生物学意义的基因集。
MSigDB基因集数据库
GSEA是由Broad研究所开发的一种富集方法,他们在提出该方法的同时还提供了一个基因集数据库——MSigdb。它从位置,功能,代谢途径,靶标结合等多种角度出发,构建出了许多的基因集合,Broad研究所将他们构建的基因集合保存在MSigDB,官网地址如下:http://software.broadinstitute.org/gsea/msigdb/index.jsp在MSigDB中,将所有的基因集划分为以下9大类别:
1. H:hallmark gene sets
特征基因集,由定义生物状态和进程的marker基因组成。
2. C1:positional gene sets
位置基因集,包含人类每条染色体上的不同cytoband区域对应的基因集合。
3. C2:curated gene sets
代谢通路基因集,包含KEGG, Reactome, BioCarta数据库,以及文献和专家支持的基因集信息。
4. C3:motif gene sets
靶基因集,包含了miRNA靶基因集和转录因子调控基因集两大类。
5. C4:computational gene sets
计算基因集,计算机软件预测出来的基因集,主要是和癌症相关的基因。
6. C5:GO gene sets
基因本体基因集,包含了Gene Ontology对应的基因集合。
7. C6:oncogenic signatures
癌症扰动基因集,来源于药物处理肿瘤后基因差异表达数据,包含已知条件处理后基因表达量发生变化的基因。
8. C7:immunologic signatures
根据在人体组织的单细胞测序研究中确定的簇标记物精选而来的。
免疫基因集,包含了免疫系统功能相关的基因集合。
9. C8:| [cell type signature gene sets]
GSEA的分析原理
常规GO/KEGG富集分析需要设定阈值过滤差异基因,阈值太宽富集的结果太多,阈值太严又可能会遗漏一些关键结果。GO/KEGG富集的结果通常还很宽泛,并不能很好地解释生物学现象。有鉴于此,Broad研究所开发了基因集富集分析(GSEA)方法。GSEA使用无监督算法,不用过滤任何基因,配合MSigDB数据库使用,更容易找到解释生物学现象的基因集。其原理如下:
GSEA分析要先将样本做组间对比分析,GSEA自带9种分析方法,分为基因表达值差异分析和相关性分析两大类。对于Case/Contral的实验设计,差异分析方法更为常用,这其中又以默认的信噪比和大家熟悉的差异倍数用的最多。对比分析之后要按结果将基因排序,以差异倍数方法为例,把所有基因按差异倍数(FC)的值降序排列以供后续分析。上图小人脚下的小方块代表排序好的差异基因列表,蓝色之外的其他色块代表属于某个基因集的基因,如黄色属于基因集A,绿色属于基因集B。最下面高低不等的竖条代表与基因列表对应的FC值,红色上调、蓝色下调、黄色没有变化。基因集的富集分析需要经历三步:
基因集A富集分析时,小人从基因列表的左端走到右端,每经过一个蓝色基因扣分,每遇到一个黄色基因加分,扣分时与FC无关,加分时考虑FC的权重。基因集A最终的富集分数(ES)是小人曾经得过的最高/低分,实际公式比这复杂,但基本理念如此。
采用置换检验计算基因集A的显著性,即p值。
基因集A富集分析完成后,按上述同样的方法完成基因集B、C直至所有输入基因集的分析。所有需要富集分析的基因集都计算ES和p值之后,将ES转换为标准富集分数(NES),并计算校正后p值。
听完我的解释之后再看官方的解释可能更容易理解:
A GSEA overview illustrating the method. (A) An expression dataset sorted by correlation with phenotype, the corresponding heat map, and the ‘‘gene tags,’’ i.e., location of genes from a set S within the sorted list. (B) Plot of the running sum for S in the dataset, including the location of the maximum enrichment score (ES) and the leading-edge subset.