利用python的dask搭建分布式集群

 一、dask介绍

dask官网地址:https://dask.org/

优势:dask内部自动实现了分布式调度、无需用户自行编写复杂的调度逻辑和程序;通过调用简单的方法就可以进行分布式计算、并支持部分模型的并行化处理;内部实现的分布式算法:xgboost、LR、sklearn的部分方法等

用一句话说:dask就是python版本的spark,是一个用Python 语言实现的分布式计算框架

二、dask安装

1.环境

建议使用:Anaconda3工具包

系统:windows、linux

2.安装

1.conda安装:conda install dask

2.pip 安装:pip install dask

3.source安装:

git clone https://github.com/dask/dask.git

cd dask 

python setup.py install

3.分布式版安装

1.conda安装:conda install dask distributed-cconda-forge

2.pip 安装:pip install dask distributed --upgrade

3.source安装:

git clone https://github.com/dask/distributed.git

cd distributed 

python  setup.py install

关于分布式版本安装的注意事项(针对macos)请参考官网:

https://distributed.dask.org/en/latest/install.html

三、dask集群搭建

1.启动主节点(类似注册中心)

本人实验环境:一台windows机器+3台虚拟化linux服务器,并4台机器均已按照上面步骤安装配置dask

选择Windows机器作为主节点,启动命令:

$ dask-scheduler

控制台显示信息如下:

distributed.scheduler - INFO - -----------------------------------------------

distributed.scheduler - INFO - Clear task state

distributed.scheduler - INFO -  Scheduler at:  tcp://192.168.1.42:8786

distributed.scheduler - INFO -                                                      :8787

distributed.scheduler - INFO - Local Directory: C:\Users\User\AppData\Local\Temp\scheduler-gd9uk980

distributed.scheduler - INFO - -----------------------------------------------

2.启动工作节点

在其他每台linux机器命令行输入:

$ dask-worker 192.168.1.42:8786

注意:后面跟的ip和端口是主节点的ip和对应服务的端口

工作节点启动成功后,此时主节点会显示多出信息:

distributed.scheduler - INFO - Register tcp://192.168.1.184:45772

distributed.scheduler - INFO - Starting worker compute stream, tcp://192.168.1.184:45772

distributed.core - INFO - Starting established connection

distributed.scheduler - INFO - Register tcp://192.168.1.183:43405

distributed.scheduler - INFO - Starting worker compute stream, tcp://192.168.1.183:43405

distributed.core - INFO - Starting established connection

distributed.scheduler - INFO - Register tcp://192.168.1.188:38095

distributed.scheduler - INFO - Starting worker compute stream, tcp://192.168.1.188:38095

distributed.core - INFO - Starting established connection


四、 dask集群使用

1.单机使用示例

"""单机dask"""

import time

from dask.distributed import Client

client = Client(asynchronous=True)

def square(x):

    return x ** 2

def neg(x):

    return -x

ts = time.time()

A = client.map(square, range(10000))

B = client.map(neg, A)

total = client.submit(sum, B)

print(total.result())

print('cost time :%s'%(time.time()-ts))

cost time :8.507587909698486


2.分布式版使用示例

"""分布式dask"""

import time

from dask.distributed import Client

client = Client('192.168.1.42:8786' ,asynchronous=True)

ts = time.time()

A = client.map(square, range(10000))

B = client.map(neg, A)

total = client.submit(sum, B)

print(total.result())

print('cost time :%s'%(time.time()-ts))

cost time :3.793848991394043

通过官网提供的测试例子可以看出dask的确体现了分布式的优势。

如果您觉得有帮助的话,可以扫码,赞赏鼓励一下!谢谢!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,875评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,569评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,475评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,459评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,537评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,563评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,580评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,326评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,773评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,086评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,252评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,921评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,566评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,190评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,435评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,129评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,125评论 2 352