计算机网络(二)| IP协议

IP概述

IP 协议简述

IP协议(Internet Protocol,互联网协议),是TCP/IP协议栈中最核心的协议之一,通过IP地址,保证了联网设备的唯一性,实现了网络通信的面向无连接和不可靠的传输功能。
IP协议的主要作用是在相互连通的网络之间传输IP数据报,最重要的部分是IP寻址、路由选择、数据分段与重组。

IP协议的头部

我们可以使用wireshark抓包分析一下IP的头部信息。


ping命令数据包
  • Version(版本号):标识IP协议的版本,目前V4版本地址已经枯竭,V6慢慢成为主流。
  • Header Length(头部长度):默认为20字节,最大为60字节
  • Differentiated Services Field (服务区分符):用于为不同的IP数据包定义不同的服务质量,一般应用在QoS技术中。
  • Total Length (总长度):标识IP头部加上上层数据的数据包大小,IP包总长度最大为65535个字节。
  • Identification (标识符):用来实现IP分片的重组,标识分片属于哪个进程,不同进程通过不同ID区分。
  • Flags(标志符):用来确认是否还有IP分片或是否能执行分片。
  • Fragment offset (分片偏移量):用于标识IP分片的位置,实现IP分片的重组。
  • Time to live (生存时间):标识IP数据包还能生存多久,根据操作系统不同,TTL默认值不同,每经过一个三层设备如路由器的处理,则TTL减去1,当TTL=0时,则此数据包被丢弃。
  • Protocol (协议号):标识IP协议上层应用。当上层协议为ICMP时,协议号为1,TCP协议号为6,UDP的协议号为17。
  • Header checksum (头部校验):用于检验IP数据包是否完整或被修改,若校验失败则丢弃数据包。
  • Source(源IP地址):标识发送者IP地址,占用32bit。
  • Destination (目的IP地址):标识接收者IP地址,占用32bit。

我们可以将几个常用的头部信息组合起来:

  • Id+Flags+FO三个字段可以实现IP数据分片和重组
  • Total Length和Header Length标记IP头部和上层数据的边界

IP地址

IP地址的分类

IP地址分为五个类别:分别为A类,B类,C类,D类,E类。

IP地址分类
  • A类:0.0.0.0 ~ 127.255.255.255
  • B类:128.0.0.0 ~ 191.255.255.255
  • C类:192.0.0.0 ~ 223.255.255.255
  • D类:224.0.0.0 ~ 239.255.255.255
  • E类:240.0.0.0 ~ 247.255.255.255

然而,这种划分方案的局限性很明显,大多数都申请的是B类地址,就会导致B类地址很快就分配完了,而A类却浪费了大量地址。
因此引入了一个新的划分方案(CIDR):引入一个子网掩码的概念来区分网络好和主机号,子网掩码本身也是一个32的正整数。子网掩码对应IP地址的网络号全为1,主机号全为0。 将IP地址与子网掩码进行按位与操作,得到的结果就是网络号。

IP v4地址不够用了怎么办

虽然CIDR一定程度上减少了IP地址的浪费,但是IPv4地址只有43亿左右,怎么都是不够用的,因此需要解决方案来解决IPv4枯竭的问题,目前有三种方案。

  • 动态分配IP地址
  • NAT技术
  • IPv6

接下来主要介绍一下NAT技术:

静态NAT

如果一个内部主机唯一占用一个公网IP,这种方式被称为一对一模型。此种方式下,转换上层协议就是不必要的,因为一个公网IP就能唯一对应一个内部主机。显然,这种方式对节约公网IP没有太大意义,主要是为了实现一些特殊的组网需求。比如用户希望隐藏内部主机的真实IP,或者实现两个IP地址重叠网络的通信。

图片来源于:https://zhuanlan.zhihu.com/p/47715358

动态NAT

它能够将未注册的IP地址映射到注册IP地址池中的一个地址。不像使用静态NAT那样,你无需静态地配置路由器,使其将每个内部地址映射到一个外部地址,但必须有足够的公有因特网IP地址,让连接到因特网的主机都能够同时发送和接收分组。

图片来源于:https://zhuanlan.zhihu.com/p/47715358

PAT

这是最常用的NAT类型。NAT重载也是动态NAT,它利用源端口将多个私网ip地址映射到一个公网ip地址(多对一)。那么,它的独特之处何在呢?它也被称为端口地址特换(PAT)。通过使用PAT(NAT重载),只需使用一个公网ip地址,就可将数千名用户连接到因特网。其核心之处就在于利用端口号实现公网和私网的转换。
面对私网内部数量庞大的主机,如果NAT只进行IP地址的简单替换,就会产生一个问题:当有多个内部主机去访问同一个服务器时,从返回的信息不足以区分响应应该转发到哪个内部主机。此时,需要NAT设备根据传输层信息或其他上层协议去区分不同的会话,并且可能要对上层协议的标识进行转换,比如TCP或UDP端口号。这样NAT网关就可以将不同的内部连接访问映射到同一公网IP的不同传输层端口,通过这种方式实现公网IP的复用和解复用。这种方式也被称为端口转换PAT、NAPT或IP伪装,但更多时候直接被称为NAT,因为它是最典型的一种应用模式。

图片来源于:https://zhuanlan.zhihu.com/p/47715358
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 194,319评论 5 459
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 81,801评论 2 371
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 141,567评论 0 319
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,156评论 1 263
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,019评论 4 355
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,090评论 1 272
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,500评论 3 381
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,192评论 0 253
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,474评论 1 290
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,566评论 2 309
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,338评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,212评论 3 312
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,572评论 3 298
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 28,890评论 0 17
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,169评论 1 250
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,478评论 2 341
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,661评论 2 335