Learning Local Search Heuristics for Boolean Satisfiability 2020-04-30

Learning Local Search Heuristics for Boolean Satisfiability

Abstract

GNN (select variable) + local search algorithm.

RL,初始X,GNN结合sofetmax作为policy 函数,选择p最大的variable翻转,每个Trajectory有一个reward(找到使得fai为真的reward为1),训练参数。

SAT problem: 属于[决定性问题],也是第一个被证明属于[NP完全]
命题逻辑公式,也称为布尔表达式,由变量,运算符AND(连接,也用∧表示),OR(分离,∨), NOT (否定,¬)和括号构成。如果通过为其变量分配适当的逻辑值(即TRUE,FALSE)可以使公式为TRUE,则称该公式是可满足的.
子句(Clause)就是每个人的愿望清单,eg,x1∨¬x2
文字(Literal)就是一个愿望 eg, x1,¬x2..
命题变元(Variable)x的真假值

Introduction

we focus on stochastic local search (SLS) and propose a learnable algorithm with a variable selection heuristic computed by a graph neural network。用强化学习训练一组solver,针对不同类别的启发式算法。

Background

boolean formula:n个variable,m个clause(wish list, 由 ∨连接literals的式子),
CNF formula is the conjunction (∧) of all clauses
φ(X) : n个{0/1} ->{0/1}, input为n个bool变量,output是0/1,最后的真假值。

local search: start with a random initial candidate solution - > iteratively refine it
Select Variable x,flip (0->1 or 1->0)

Select Variable:
1)walkSAT
randomly selects a clause unsatisfied by the current assignment 使得最少的previously satisfied clauses becoming unsatisfie
2)This work:
employs a graph neural network to select a variable. 可以选任意,不一定要在unsatisfied clauses里面选。
with some probability randomly select a variable from a randomly selected unsatisfied clause.

image.png

GNN : maps each node to a vector space, embedding by iteratively updating the representation of the node based on its neighbors.

Model

graphical representation for CNF formulas:
Factor graph(因子图):
undirected bipartite graph (二分图,一边variable,一边clause(∨连接)) +
two types of edge: positive (x)and negative(¬x) polarities (正负极)

input of the mode:
formula φ + an assignment X


image.png

achitecture of GNN -> policy part of RL


image.png

Training

MDP represented as a tuple (S_D,A,T,R,γ) ,learning a good heuristic is equivalent to finding an optimal policy π, max accumulated reward R
训练policy network中的参数,ie找到最好的Π使得每次找到合适的action a (意义为:翻转X_a)
S_D: a set of states (s = (φ,X) ),
A: maps states to available actions A(s) = {1,...,n}
T: SD ×{1,...,n}→SD mapping from a state-action pair to the next state T(s,a) = T((φ,X),a) = (φ,Flip(X,a))
R : SD →{0,1}is the reward function, sR(s) = R((φ,X)) = φ(X), only 1 when the assignment satisfies folmula
γ ∈ (0,1] is the discount factor.
Policy is the function ρθ(φ,X) which returns an action(variable index) a ∼ πθ(φ,X)
where πθ is the policy network, learn θ


image.png

Data

A problem distribution D:we sample a formula φ ∼ D,generate multiple trajectories for the same formula with several different initial assignments X.
Curriculum Learning: training is performed on a sequence of problems of increasing difficulty.
the policy learned for easier problems should at least partially generalize to more difficult problems,

Experiments

baseline:WalkSAT.

imporve:

model-based algorithms such as Monte Carlo tree search [12] can provide critical improvements. As a step towards practicality, it is also important to incorporate the suite of heuristics in an algorithm portfolio. In this work, we have achieved promising results for learning heuristics, and we hope that this helps pave the way for automated algorithm design.

Words and Phrases

runs for T iterations

makes it viable to 使它可行

a number of avenues for improvement 许多改进方法

omitted for brevity, 为了简洁起见

implement == achieve, realize, implement

Solid and dashed edges correspond respectively to 实线和虚线分别对应。。。

concretely具体的

opt == select

iteratively refine it
迭代地完善它

explicitly == clearly ==demonstratively 明确的

Lately... In a more recent work...

On another front ~~~ on the other hand

from scratch
从头开始

incorporate A in B
在B中引入A

generic == common;general

Recently there has been a surge of interest in applying machine learning to combinatorial optimization
(a surge of 激增)

manually-designed, requiring significant insight into the problem
insight: 慧眼 manually-designed (手动设计)

abbreviated SAT 缩写为SAT

is referred to 被称为
refer to 参考/指

SAT is the canonical NP-complete problem 典型的

a plethora of problems 大量的问题
arising from A 由A产生

algorithms that require fewer, although costlier, steps to arrive at a solution.
更少step,但是更贵

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,752评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,100评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,244评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,099评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,210评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,307评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,346评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,133评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,546评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,849评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,019评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,702评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,331评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,030评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,260评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,871评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,898评论 2 351