详解4种经典的限流算法

最近,我们的业务系统引入了Guava的RateLimiter限流组件,它是基于令牌桶算法实现的,而令牌桶是非常经典的限流算法。本文将跟大家一起学习几种经典的限流算法。

限流是什么?

维基百科的概念如下:

In computer networks, rate limiting is used to control the rate of requests sent or
received by a network interface controller. It can be used to prevent DoS attacks 
and limit web scraping

简单翻译一下:在计算机网络中,限流就是控制网络接口发送或接收请求的速率,它可防止DoS攻击和限制Web爬虫。

限流,也称流量控制。是指系统在面临高并发,或者大流量请求的情况下,限制新的请求对系统的访问,从而保证系统的稳定性。限流会导致部分用户请求处理不及时或者被拒,这就影响了用户体验。所以一般需要在系统稳定和用户体验之间平衡一下。举个生活的例子:

一些热门的旅游景区,一般会对每日的旅游参观人数有限制的。每天只会卖出固定数目的门票,比如5000张。假设在五一、国庆假期,你去晚了,可能当天的票就已经卖完了,就无法进去游玩了。即使你进去了,排队也能排到你怀疑人生。

常见的限流算法

固定窗口限流算法

首先维护一个计数器,将单位时间段当做一个窗口,计数器记录这个窗口接收请求的次数。

  • 当次数少于限流阀值,就允许访问,并且计数器+1

  • 当次数大于限流阀值,就拒绝访问。

  • 当前的时间窗口过去之后,计数器清零。

假设单位时间是1秒,限流阀值为3。在单位时间1秒内,每来一个请求,计数器就加1,如果计数器累加的次数超过限流阀值3,后续的请求全部拒绝。等到1s结束后,计数器清0,重新开始计数。如下图:

伪代码如下:

    /**
     * 固定窗口时间算法
     * @return
     */
    boolean fixedWindowsTryAcquire() {
        long currentTime = System.currentTimeMillis();  //获取系统当前时间
        if (currentTime - lastRequestTime > windowUnit) {  //检查是否在时间窗口内
            counter = 0;  // 计数器清0
            lastRequestTime = currentTime;  //开启新的时间窗口
        }
        if (counter < threshold) {  // 小于阀值
            counter++;  //计数器加1
            return true;
        }

        return false;
    }

但是,这种算法有一个很明显的临界问题:假设限流阀值为5个请求,单位时间窗口是1s,如果我们在单位时间内的前0.8-1s和1-1.2s,分别并发5个请求。虽然都没有超过阀值,但是如果算0.8-1.2s,则并发数高达10,已经超过单位时间1s不超过5阀值的定义啦。

滑动窗口限流算法

滑动窗口限流解决固定窗口临界值的问题。它将单位时间周期分为n个小周期,分别记录每个小周期内接口的访问次数,并且根据时间滑动删除过期的小周期。

一张图解释滑动窗口算法,如下:

假设单位时间还是1s,滑动窗口算法把它划分为5个小周期,也就是滑动窗口(单位时间)被划分为5个小格子。每格表示0.2s。每过0.2s,时间窗口就会往右滑动一格。然后呢,每个小周期,都有自己独立的计数器,如果请求是0.83s到达的,0.8~1.0s对应的计数器就会加1。

我们来看下滑动窗口是如何解决临界问题的?

假设我们1s内的限流阀值还是5个请求,0.81.0s内(比如0.9s的时候)来了5个请求,落在黄色格子里。时间过了1.0s这个点之后,又来5个请求,落在紫色格子里。如果**是固定窗口算法,是不会被限流的**,但是**滑动窗口的话,每过一个小周期,它会右移一个小格**。过了1.0s这个点后,会右移一小格,当前的单位时间段是0.21.2s,这个区域的请求已经超过限定的5了,已触发限流啦,实际上,紫色格子的请求都被拒绝啦。

TIPS: 当滑动窗口的格子周期划分的越多,那么滑动窗口的滚动就越平滑,限流的统计就会越精确。

滑动窗口算法伪代码实现如下:

 /**
     * 单位时间划分的小周期(单位时间是1分钟,10s一个小格子窗口,一共6个格子)
     */
    private int SUB_CYCLE = 10;

    /**
     * 每分钟限流请求数
     */
    private int thresholdPerMin = 100;

    /**
     * 计数器, k-为当前窗口的开始时间值秒,value为当前窗口的计数
     */
    private final TreeMap<Long, Integer> counters = new TreeMap<>();

   /**
     * 滑动窗口时间算法实现
     */
    boolean slidingWindowsTryAcquire() {
        long currentWindowTime = LocalDateTime.now().toEpochSecond(ZoneOffset.UTC) / SUB_CYCLE * SUB_CYCLE; //获取当前时间在哪个小周期窗口
        int currentWindowNum = countCurrentWindow(currentWindowTime); //当前窗口总请求数

        //超过阀值限流
        if (currentWindowNum >= thresholdPerMin) {
            return false;
        }

        //计数器+1
        counters.get(currentWindowTime)++;
        return true;
    }

   /**
    * 统计当前窗口的请求数
    */
    private int countCurrentWindow(long currentWindowTime) {
        //计算窗口开始位置
        long startTime = currentWindowTime - SUB_CYCLE* (60s/SUB_CYCLE-1);
        int count = 0;

        //遍历存储的计数器
        Iterator<Map.Entry<Long, Integer>> iterator = counters.entrySet().iterator();
        while (iterator.hasNext()) {
            Map.Entry<Long, Integer> entry = iterator.next();
            // 删除无效过期的子窗口计数器
            if (entry.getKey() < startTime) {
                iterator.remove();
            } else {
                //累加当前窗口的所有计数器之和
                count =count + entry.getValue();
            }
        }
        return count;
    }

滑动窗口算法虽然解决了固定窗口的临界问题,但是一旦到达限流后,请求都会直接暴力被拒绝。酱紫我们会损失一部分请求,这其实对于产品来说,并不太友好。

漏桶算法

漏桶算法面对限流,就更加的柔性,不存在直接的粗暴拒绝。

它的原理很简单,可以认为就是注水漏水的过程。往漏桶中以任意速率流入水,以固定的速率流出水。当水超过桶的容量时,会被溢出,也就是被丢弃。因为桶容量是不变的,保证了整体的速率。

  • 流入的水滴,可以看作是访问系统的请求,这个流入速率是不确定的。

  • 桶的容量一般表示系统所能处理的请求数。

  • 如果桶的容量满了,就达到限流的阀值,就会丢弃水滴(拒绝请求)

  • 流出的水滴,是恒定过滤的,对应服务按照固定的速率处理请求。

漏桶算法伪代码实现如下:

 /**
     * 每秒处理数(出水率)
     */
    private long rate;

    /**
     *  当前剩余水量
     */
    private long currentWater;

    /**
     * 最后刷新时间
     */
    private long refreshTime;

    /**
     * 桶容量
     */
    private long capacity;

    /**
     * 漏桶算法
     * @return
     */
    boolean leakybucketLimitTryAcquire() {
        long currentTime = System.currentTimeMillis();  //获取系统当前时间
        long outWater = (currentTime - refreshTime) / 1000 * rate; //流出的水量 =(当前时间-上次刷新时间)* 出水率
        long currentWater = Math.max(0, currentWater - outWater); // 当前水量 = 之前的桶内水量-流出的水量
        refreshTime = currentTime; // 刷新时间

        // 当前剩余水量还是小于桶的容量,则请求放行
        if (currentWater < capacity) {
            currentWater++;
            return true;
        }

        // 当前剩余水量大于等于桶的容量,限流
        return false;
    }

在正常流量的时候,系统按照固定的速率处理请求,是我们想要的。但是面对突发流量的时候,漏桶算法还是循规蹈矩地处理请求,这就不是我们想看到的啦。流量变突发时,我们肯定希望系统尽量快点处理请求,提升用户体验嘛。

令牌桶算法

面对突发流量的时候,我们可以使用令牌桶算法限流。

令牌桶算法原理

  • 有一个令牌管理员,根据限流大小,定速往令牌桶里放令牌。

  • 如果令牌数量满了,超过令牌桶容量的限制,那就丢弃。

  • 系统在接受到一个用户请求时,都会先去令牌桶要一个令牌。如果拿到令牌,那么就处理这个请求的业务逻辑;

  • 如果拿不到令牌,就直接拒绝这个请求。

漏桶算法伪代码实现如下:

    /**
     * 每秒处理数(放入令牌数量)
     */
    private long putTokenRate;

    /**
     * 最后刷新时间
     */
    private long refreshTime;

    /**
     * 令牌桶容量
     */
    private long capacity;

    /**
     * 当前桶内令牌数
     */
    private long currentToken = 0L;

    /**
     * 漏桶算法
     * @return
     */
    boolean tokenBucketTryAcquire() {

        long currentTime = System.currentTimeMillis();  //获取系统当前时间
        long generateToken = (currentTime - refreshTime) / 1000 * putTokenRate; //生成的令牌 =(当前时间-上次刷新时间)* 放入令牌的速率
        currentToken = Math.min(capacity, generateToken + currentToken); // 当前令牌数量 = 之前的桶内令牌数量+放入的令牌数量
        refreshTime = currentTime; // 刷新时间

        //桶里面还有令牌,请求正常处理
        if (currentToken > 0) {
            currentToken--; //令牌数量-1
            return true;
        }

        return false;
    }

如果令牌发放的策略正确,这个系统即不会被拖垮,也能提高机器的利用率。Guava的RateLimiter限流组件,就是基于令牌桶算法实现的。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,542评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,596评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,021评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,682评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,792评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,985评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,107评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,845评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,299评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,612评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,747评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,441评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,072评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,828评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,069评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,545评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,658评论 2 350

推荐阅读更多精彩内容

  • 在微服务架构中一个会被经常提及的概念就是“服务的熔断与限流”。而之所以如此频繁的提及这个概念,是因为在高并发场景下...
    风平浪静如码阅读 453评论 0 1
  • 计数器 滑动窗口 漏桶 令牌桶 计数器 计数器是一种最简单限流算法,其原理就是:在一段时间间隔内,对请求进行计数,...
    杜子龙阅读 289评论 0 0
  • 表情是什么,我认为表情就是表现出来的情绪。表情可以传达很多信息。高兴了当然就笑了,难过就哭了。两者是相互影响密不可...
    Persistenc_6aea阅读 124,525评论 2 7
  • 16宿命:用概率思维提高你的胜算 以前的我是风险厌恶者,不喜欢去冒险,但是人生放弃了冒险,也就放弃了无数的可能。 ...
    yichen大刀阅读 6,041评论 0 4