机器学习分类算法指标总结

分类

在实际的应用中,对于一个而分类问题,我们通常会更关注其中的某一类。在建模前的数据转换时,也常常将我们更关注的类别转换成1。因此,对于预测结果进行评估时,关注点通常会聚焦于真实值或预测值为1的情况。

1. 混淆矩阵

image.png

混淆矩阵常用来计算评价指标,有:

查准率 (精确率) = precision = TP/(TP+FP)

查全率(召回率) = recall = TP/(TP+FN)

在统计学中,伪阳性又被称为第一类型错误,而伪阴性被称为第二类型错误,因此,查准率通常被认为时衡量第一类型错误的指标,而查全率是衡量第二类型错误的指标。

从概率上来讲,预测值等于1时,真实值等于1的概率为查准率;真实值等于1时,预测值等于1的概率为查全率。即:
precision = P(y_i = 1| \hat {y_i} = 1)
recall = P(\hat {y_i} = 1 |y_i = 1 )
理想的情况是这两个指标都很高,但现实是残酷的,这两个指标通常存在着此消彼长的现象。

F1-score 综合考虑了预测结果的产准率和查全率面试一个比较好的评估指标:

F_1 = 2/(\frac{1}{precision} + \frac{1}{recall}) = 2\frac{precison * recall}{precision + recall}

对于某些偏重某一特定指标的场景,相应地定义指标F_{\beta}-score

F_{\beta} = (1+\beta ^2)\frac{precison * recall}{precision + recall}

为了分清查准率变化时变化的来源,效仿查全率,定义真阳性率(TPR)和伪阳性率(FPR):
TPR = TP/(TP+FN)

FPR = FP/(FP+TN)

image.png

注: 在ROC空间中,离左上角越近的点预测准确率越高。

2. 群体稳定性指标(population stability index)

psi = sum((实际占比-预期占比)/ln(实际占比/预期占比))

举个例子解释下,比如训练一个logistic回归模型,预测时候会有个概率输出p。你测试集上的输出设定为p1吧,将它从小到大排序后10等分,如0-0.1,0.1-0.2.......

现在你用这个模型去对新的样本进行预测,预测结果叫p2,按p1的区间也划分为10等分。

实际占比就是p2上在各区间的用户占比,预期占比就是p1上各区间的用户占比。
意义就是如果模型跟稳定,那么p1和p2上各区间的用户应该是相近的,占比不会变动很大,也就是预测出来的概率不会差距很大。

一般认为psi小于0.1时候模型稳定性很高,0.1-0.25一般,大于0.25模型稳定性差,建议重做。

3. 对数损失(Log loss)

亦被称为逻辑回归损失(Logistic regression loss)或交叉熵损失(Cross-entropy loss)。

对于二分类问题,设y∈{0,1}且p=Pr(y=1),则对每个样本的对数损失为:

L_{\log(y,p)} = -(y\log p + (1-y)\log(1-p))

可以很容易地将其扩展到多分类问题上。
L_{\log(Y_i,P_i)} = \Sigma y_ {i,k}\log {p_ {i,k}}

4. KS

KS(Kolmogorov-Smirnov):KS用于模型风险区分能力进行评估,
指标衡量的是好坏样本累计分部之间的差值。
好坏样本累计差异越大,KS指标越大,那么模型的风险区分能力越强。

KS的计算步骤如下:

  1. 计算每个评分区间的好坏账户数。
  2. 计算每个评分区间的累计好账户数占总好账户数比率(good%)和累计坏账户数占总坏账户数比率(bad%)。
  3. 计算每个评分区间累计坏账户占比与累计好账户占比差的绝对值(累计good%-累计bad%),然后对这些绝对值取最大值即得此评分卡的K-S值。

KS也可以理解成:
KS = Max(TPR-FPR)

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,427评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,551评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,747评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,939评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,955评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,737评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,448评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,352评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,834评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,992评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,133评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,815评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,477评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,022评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,147评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,398评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,077评论 2 355

推荐阅读更多精彩内容