一文看懂词嵌入word embedding(2种算法+其他文本表示比较)

一文看懂 word embedding

文本表示(Representation)

文本是一种非结构化的数据信息,是不可以直接被计算的。

文本表示的作用就是将这些非结构化的信息转化为结构化的信息,这样就可以针对文本信息做计算,来完成我们日常所能见到的文本分类,情感判断等任务。

文本表示将非结构化数据转化为结构化数据

文本表示的方法有很多种,下面只介绍 3 类方式:

  1. 独热编码 | one-hot representation
  2. 整数编码
  3. 词嵌入 | word embedding
word embedding的关系

独热编码 | one-hot representation

假如我们要计算的文本中一共出现了4个词:猫、狗、牛、羊。向量里每一个位置都代表一个词。所以用 one-hot 来表示就是:

猫:[1,0,0,0]

狗:[0,1,0,0]

牛:[0,0,1,0]

羊:[0,0,0,1]

one-hot编码

但是在实际情况中,文本中很可能出现成千上万个不同的词,这时候向量就会非常长。其中99%以上都是 0。

one-hot 的缺点如下:

  1. 无法表达词语之间的关系
  2. 这种过于稀疏的向量,导致计算和存储的效率都不高

整数编码

这种方式也非常好理解,用一种数字来代表一个词,上面的例子则是:

猫:1

狗:2

牛:3

羊:4

整数编码

将句子里的每个词拼起来就是可以表示一句话的向量。

整数编码的缺点如下:

  1. 无法表达词语之间的关系
  2. 对于模型解释而言,整数编码可能具有挑战性。

什么是词嵌入 | word embedding?

word embedding 是文本表示的一类方法。跟 one-hot 编码和整数编码的目的一样,不过他有更多的优点。

词嵌入并不特指某个具体的算法,跟上面2种方式相比,这种方法有几个明显的优势:

  1. 他可以将文本通过一个低维向量来表达,不像 one-hot 那么长。
  2. 语意相似的词在向量空间上也会比较相近。
  3. 通用性很强,可以用在不同的任务中。

再回顾上面的例子:

word embedding:语意相似的词在向量空间上也会比较相近

2 种主流的 word embedding 算法

2 种主流的 word embedding 算法

Word2vec

这是一种基于统计方法来获得词向量的方法,他是 2013 年由谷歌的 Mikolov 提出了一套新的词嵌入方法。

这种算法有2种训练模式:

  1. 通过上下文来预测当前词
  2. 通过当前词来预测上下文

想要详细了解 Word2vec,可以看看这篇文章:《一文看懂 Word2vec(基本概念+2种训练模型+5个优缺点)

GloVe

GloVe 是对 Word2vec 方法的扩展,它将全局统计和 Word2vec 的基于上下文的学习结合了起来。

想要了解 GloVe 的 三步实现方式、训练方法、和 w2c 的比较。可以看看这篇文章:《GloVe详解
本文首发自 产品经理的 AI 学习库 easyai.tech

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,372评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,368评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,415评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,157评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,171评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,125评论 1 297
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,028评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,887评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,310评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,533评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,690评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,411评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,004评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,659评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,812评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,693评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,577评论 2 353

推荐阅读更多精彩内容