GAN

Tue Aug 6 14:07:09 CST 2019

What I want to know

  • What is GAN?
  • Why does it work?
  • How does learn the data distribution?
  • How can it help my project?

Materials

[Thesis] Learning to Synthesize and Manipulate Natural Images (SIG18 best PhD thesis)

[Video] Introduction to GANs, NIPS 2016, Ian Goodfellow, OpenAI (30mins)

<span id='nips2h'></span>
[Video] Ian Goodfellow: Generative Adversarial Networks (NIPS 2016 tutorial) (2hrs)

[WebPage] MSRA: 到底什么是生成式对抗网络GAN?

<span id="web2"></span>
[WebPage] A Beginner's Guide to Generative Adversarial Networks (GANs)

Notes

Basics

GAN网络有一个生成器\mathbf{G}和一个判别器\mathbf{D},生成器的目标是为了学习数据分布,判别器的目标是判定输入的数据是否符合真实分布。

优化方程

min_\mathbf{G}max_\mathbf{D}\{E_{x\sim{}P_r}[log\mathbf{D}(x)]+E_{x\sim{}P_g}[log(1-\mathbf{D}(x))]\}

网络的两个部分

  • input noise z -> \mathbf{G} -> x sampled from \mathbf{G}, x=\mathbf{G}(z) -> \mathbf{D} -> \mathbf{G} tries to make \mathbf{D}(x)\rightarrow1, \mathbf{D} tries to make \mathbf{D}(x)\rightarrow0

  • x sampled from data -> \mathbf{D} -> D(x)\rightarrow1

Training

最直观的处理办法就是分别对D和g进行交互迭代,固定g,优化D,一段时间后,固定D再优化g,直到过程收敛。

High level understanding

Basically, GAN consists of a generator and a discriminator. The generator takes a feature vector, which in this case is random noise, and outputs a sample that mimics the data distribution. The discriminator takes a sample either from the original data or generated by generator, its job is to successfully distinguish real ones from fake ones.

As shown in the following figure, discriminator is supervised by ground truth label, while the generator is supervised by discriminator.
[图片上传失败...(image-68adc6-1647766988833)]

Looking at it separately, the discriminator does a standard binary classification task, real or fake. The network returns a probability, a number between 0 and 1, with 1 representing a prediction of authenticity and 0 representing fake.

The generator takes a feature and expands it to a data sample. It is the opposite process of discriminator. The goal of a generator is to learn the data distribution, how to tell if you have successfully learned the distribution? The generator generates data from random noise, if the discriminator thinks it is real, the generator can be said to have learned the real distribution of the dataset.

The question a generative algorithm tries to answer is: Assuming this email is spam, how likely are these features (words it contains)? While discriminative models care about the relation between y (label) and x (data), generative models care about “how you get x.” They allow you to capture p(x\vert y), the probability of x given y, or the probability of features given a label or category.

The discriminator, on the other hand, captures p(y\vert x), the probability of y given x. Which is given an email (words it contains), how likely the email is spam.

GANs, Encoder-decoder, Autoencoders and VAEs

The generator in GAN serves the similar function as a decoder in Encoder-decoder network??? What are the differences.

[quote]
You can bucket generative algorithms into one of three types:

  • Given a label, they predict the associated features (Naive Bayes)
  • Given a hidden representation, they predict the associated features (VAE, GAN)
  • Given some of the features, they predict the rest (inpainting, imputation)

Applications

  • Same domain
    • super resolution
    • image filling / repairing
  • Cross domain transfer
    • 2d to 3d
    • text to image
    • picture style transfer
  • Learn joint distribution
    • learn attributes from images

Notes on NIPS tutorial

RoadMap

  • Why study generative modeling?
  • How do generative models work? How do GANs compare to others?
  • How do GANs work?
  • Tips and tricks
  • Research frontiers
  • Combining GANs with other methods
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,080评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,422评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,630评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,554评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,662评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,856评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,014评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,752评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,212评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,541评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,687评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,347评论 4 331
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,973评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,777评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,006评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,406评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,576评论 2 349

推荐阅读更多精彩内容