2018-10-26

排序算法

先说一些 关于排序的定义吧

  • 排序算法 通常所说的排序算法往往指的是内部排序算法,即数据记录在内存中进行排序
  • 算法分类 比较排序 非比较排序
  • 比较排序 通过比较来决定元素间的相对次序, 时间复杂度O(nlogn) ~ O(n^2),主要有:冒泡排序,选择排序,插入排序,归并排序,堆排序,快速排序等。
  • 非比较排序 时间复杂度可以达到O(n),主要有:计数排序,基数排序,桶排序等。
  • 时间复杂度 对排序数据的总的操作次数。反映当n变化时,操作次数呈现什么规律。
  • 空间复杂度 是指算法在计算机内执行时所需存储空间的度量,它也是数据规模n的函数。
  • 稳定与不稳定 如果a原本在b前面,而a=b,排序之后a仍然在b的前面 , 这就是稳定的, 反之就是不稳定的.
  • 稳定的好处 排序算法如果是稳定的,那么从一个键上排序,然后再从另一个键上排序,前一个键排序的结果可以为后一个键排序所用
分析表
  • n: 数据规模
  • k: “桶”的个数
  • In-place: 占用常数内存,不占用额外内存
  • Out-place: 占用额外内存
结构图

在冒泡排序之类的排序中,问题规模为n,又因为需要比较n次,所以平均时间复杂度为O(n²)。在归并排序、快速排序之类的排序中,问题规模通过分治法消减为logN次,所以时间复杂度平均O(nlogn)。

冒泡排序

描述

  1. 比较相邻的元素。如果第一个比第二个大,就交换它们两个
  2. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数
  3. 针对所有的元素重复以上的步骤,除了最后一个
  4. 重复步骤1~3,直到排序完成

代码实现

  public static int[] bubbleSort(int[] array) {
        if (array.length == 0)
            return array;
        for (int i = 0; i < array.length; i++)
            for (int j = 0; j < array.length - 1 - i; j++)
                if (array[j + 1] < array[j]) {
                    int temp = array[j + 1];
                    array[j + 1] = array[j];
                    array[j] = temp;
                }
        return array;
    }

鸡尾酒排序

描述
鸡尾酒排序,也叫定向冒泡排序,是冒泡排序的一种改进。此算法与冒泡排序的不同处在于从低到高然后从高到低,而冒泡排序则仅从低到高去比较序列里的每个元素。他可以得到比冒泡排序稍微好一点的效能。

   //示例入参数组; src = {5,2,4,1,3}
    public static void cocktail_sort(int[] src){
        System.out.println(Arrays.toString(src));
        long startTime = System.nanoTime();
        //该算法是只需要向左或右推数组长度的一半次数就够了
        for (int i = 0; i < src.length / 2; i++){
            //第一个for循环是将数组中最大的数,向最后推。结果最大的数总会在最右边
            //例如上面的数组
            //第一次:5因为最大,所以在执行下面循环之后,一定位于数组最后面。(以此类推,第二次,是4最大,会位于5的前面)
            for (int j = i; j < src.length - i - 1; j++){
                if (src[j] > src[j + 1]){
                    int temp = src[j];
                    src[j] = src[j + 1];
                    src[j + 1] = temp;
                }
            }
            //第二个循环是将数组中最小的数,往最前面推。结果最小的数总会在最右边
            //例如上面的数组
            //第一次往右,1是最小,循环执行完毕后,1一定位于数组最前面。(类似地,第二次就会把第二小的数字2,向左推到1的后面)
            for (int j = src.length - 1 - (i + 1); j >= i; j--){
                if (src[j] > src[j + 1]){
                    int temp = src[j];
                    src[j] = src[j + 1];
                    src[j + 1] = temp;
                }
            }
            //当执行完一轮循环之后,向右和向左推的数就不会再参与下一轮的循环了,不然就浪费资源了。
        }
        long endTime = System.nanoTime();
        System.out.println("take time = " + (endTime - startTime)+"ns");
        System.out.println( Arrays.toString(src));
    }

在乱数序列的状态下,鸡尾酒排序与冒泡排序的效率都很差劲。

选择排序

描述
首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。
选择排序是最稳定的排序算法 因为无论什么数据进去都是O(n2)的时间复杂度

  1. 初始状态:无序区为R[1..n],有序区为空;
  2. 第i趟排序(i=1,2,3…n-1)开始时,当前有序区和无序区分别为R[1..i-1]和R(i..n)。该趟排序从当前无序区中-选出关键字最小的记录 R[k],将它与无序区的第1个记录R交换,使R[1..i]和R[i+1..n)分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区;
  3. n-1趟结束,数组有序化了。
    [图片上传失败...(image-fcf727-1540559993055)]
  for (int i = 0; i < array.length; i++) {
            int minIndex = i;
            for (int j = i; j < array.length; j++) {
                if (array[j] < array[minIndex]) //找到最小的数
                    minIndex = j; //将最小数的索引保存
            }
            int temp = array[minIndex];
            array[minIndex] = array[i];
            array[i] = temp;
        }

插入排序

描述
通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
[图片上传失败...(image-aa6581-1540559993055)]

  1. 从第一个元素开始,该元素可以认为已经被排序;
  2. 取出下一个元素,在已经排序的元素序列中从后向前扫描;
  3. 如果该元素(已排序)大于新元素,将该元素移到下一位置;
  4. 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
  5. 将新元素插入到该位置后;
  6. 重复步骤2~5。
int current;
        for (int i = 0; i < array.length - 1; i++) {
            current = array[i + 1];
            int preIndex = i;
            while (preIndex >= 0 && current < array[preIndex]) {
                array[preIndex + 1] = array[preIndex];
                preIndex--;
            }
            array[preIndex + 1] = current;
        }

希尔排序

描述(ShellSort)
是对插入排序的优化升级 该算法是冲破O(n2)的第一批算法之一 它与插入排序的不同之处在于,它会优先比较距离较远的元素。希尔排序又叫缩小增量排序。
希尔排序是把记录按下表的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止
[图片上传失败...(image-42fbf7-1540559993055)]
算法描述
我们来看下希尔排序的基本步骤,在此我们选择增量gap=length/2,缩小增量继续以gap = gap/2的方式,这种增量选择我们可以用一个序列来表示,{n/2,(n/2)/2...1},称为增量序列。希尔排序的增量序列的选择与证明是个数学难题,我们选择的这个增量序列是比较常用的,也是希尔建议的增量,称为希尔增量,但其实这个增量序列不是最优的。此处我们做示例使用希尔增量。

  1. 选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;
  2. 按增量序列个数k,对序列进行k 趟排序;
  3. 每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m的子序列,分别对各子表进行直接插入排序。仅增量因子为1时,整个序列作为一个表来处理,表长度即为整个序列的长度。
int len = array.length;
        int temp, gap = len / 2;
        while (gap > 0) {
            for (int i = gap; i < len; i++) {
                temp = array[i];
                int preIndex = i - gap;
                while (preIndex >= 0 && array[preIndex] > temp) {
                    array[preIndex + gap] = array[preIndex];
                    preIndex -= gap;
                }
                array[preIndex + gap] = temp;
            }
            gap /= 2;
        }

归并排序

描述(mergeSort)
和选择排序一样,归并排序的性能不受输入数据的影响,始终都是O(n log n)的时间复杂度。代价是需要额外的内存空间。

归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。归并排序是一种稳定的排序方法。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。

算法描述

  1. 把长度为n的输入序列分成两个长度为n/2的子序列;
  2. 对这两个子序列分别采用归并排序;
  3. 将两个排序好的子序列合并成一个最终的排序序列。
    [图片上传失败...(image-5f1cd2-1540559993055)]
/**
     * 归并排序
     *
     * @param array
     * @return
     */
    public static int[] MergeSort(int[] array) {
        if (array.length < 2) return array;
        int mid = array.length / 2;
        int[] left = Arrays.copyOfRange(array, 0, mid);
        int[] right = Arrays.copyOfRange(array, mid, array.length);
        return merge(MergeSort(left), MergeSort(right));
    }
    /**
     * 归并排序——将两段排序好的数组结合成一个排序数组
     *
     * @param left
     * @param right
     * @return
     */
    public static int[] merge(int[] left, int[] right) {
        int[] result = new int[left.length + right.length];
        for (int index = 0, i = 0, j = 0; index < result.length; index++) {
            if (i >= left.length)
                result[index] = right[j++];
            else if (j >= right.length)
                result[index] = left[i++];
            else if (left[i] > right[j])
                result[index] = right[j++];
            else
                result[index] = left[i++];
        }
        return result;
    }

快速排序

快速排序的基本思想:通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序
算法描述
快速排序使用分治法来把一个串(list)分为两个子串(sub-lists)。具体算法描述如下:

  1. 从数列中挑出一个元素,称为 “基准”(pivot);
  2. 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的3. 中间位置。这个称为分区(partition)操作;
    递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序
    [图片上传失败...(image-d505a2-1540559993056)]
/**
     * 快速排序方法
     * @param array
     * @param start
     * @param end
     * @return
     */
    public static int[] QuickSort(int[] array, int start, int end) {
        if (array.length < 1 || start < 0 || end >= array.length || start > end) return null;
        int smallIndex = partition(array, start, end);
        if (smallIndex > start)
            QuickSort(array, start, smallIndex - 1);
        if (smallIndex < end)
            QuickSort(array, smallIndex + 1, end);
        return array;
    }
    /**
     * 快速排序算法——partition
     * @param array
     * @param start
     * @param end
     * @return
     */
    public static int partition(int[] array, int start, int end) {
        int pivot = (int) (start + Math.random() * (end - start + 1));
        int smallIndex = start - 1;
        swap(array, pivot, end);
        for (int i = start; i <= end; i++)
            if (array[i] <= array[end]) {
                smallIndex++;
                if (i > smallIndex)
                    swap(array, i, smallIndex);
            }
        return smallIndex;
    }

    /**
     * 交换数组内两个元素
     * @param array
     * @param i
     * @param j
     */
    public static void swap(int[] array, int i, int j) {
        int temp = array[i];
        array[i] = array[j];
        array[j] = temp;
    }

堆排序

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

算法描述

  1. 将初始待排序关键字序列(R1,R2….Rn)构建成大顶堆,此堆为初始的无序区;
  2. 将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,……Rn-1)和新的有序区(Rn),且满足R[1,2…n-1]<=R[n];
  3. 由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,……Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2….Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。

[图片上传失败...(image-7ac786-1540559993056)]

//声明全局变量,用于记录数组array的长度;
static int len;
    /**
     * 堆排序算法
     *
     * @param array
     * @return
     */
    public static int[] HeapSort(int[] array) {
        len = array.length;
        if (len < 1) return array;
        //1.构建一个最大堆
        buildMaxHeap(array);
        //2.循环将堆首位(最大值)与末位交换,然后在重新调整最大堆
        while (len > 0) {
            swap(array, 0, len - 1);
            len--;
            adjustHeap(array, 0);
        }
        return array;
    }
    /**
     * 建立最大堆
     *
     * @param array
     */
    public static void buildMaxHeap(int[] array) {
        //从最后一个非叶子节点开始向上构造最大堆
        for (int i = (len/2 - 1); i >= 0; i--) { //感谢 @让我发会呆 网友的提醒,此处应该为 i = (len/2 - 1) 
            adjustHeap(array, i);
        }
    }
    /**
     * 调整使之成为最大堆
     *
     * @param array
     * @param i
     */
    public static void adjustHeap(int[] array, int i) {
        int maxIndex = i;
        //如果有左子树,且左子树大于父节点,则将最大指针指向左子树
        if (i * 2 < len && array[i * 2] > array[maxIndex])
            maxIndex = i * 2;
        //如果有右子树,且右子树大于父节点,则将最大指针指向右子树
        if (i * 2 + 1 < len && array[i * 2 + 1] > array[maxIndex])
            maxIndex = i * 2 + 1;
        //如果父节点不是最大值,则将父节点与最大值交换,并且递归调整与父节点交换的位置。
        if (maxIndex != i) {
            swap(array, maxIndex, i);
            adjustHeap(array, maxIndex);
        }
    }

https://www.cnblogs.com/guoyaohua/p/8600214.html

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容

  • 概述 排序有内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部...
    蚁前阅读 5,164评论 0 52
  • 概述:排序有内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部...
    每天刷两次牙阅读 3,727评论 0 15
  • 1.插入排序—直接插入排序(Straight Insertion Sort) 基本思想: 将一个记录插入到已排序好...
    依依玖玥阅读 1,239评论 0 2
  • 概述排序有内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的...
    Luc_阅读 2,255评论 0 35
  • 我们每个人或多或少都有过目标,有些人坚持完成了自己的目标,有些人中途放弃了目标,还有些人没有开始就己经结束了目标,...
    老焦的一天阅读 307评论 1 3