面向对象编程
面向过程编程和面向对象编程:
面向过程的程序设计把计算机程序视为一系列的命令集合,即一组函数的顺序执行。为了简化程序设计,面向过程把函数继续切分为子函数,即把大块函数通过切割成小块函数来降低系统的复杂度。
面向对象编程把对象作为程序的基本单元,一个对象包含了数据和操作数据的函数。
面向对象的程序设计把计算机程序视为一组对象的集合,而每个对象都可以接收其他对象发过来的消息,并处理这些消息,计算机程序的执行就是一系列消息在各个对象之间传递。
在Python中,所有数据类型都可以视为对象;当然也可以自定义对象,自定义的对象数据类型就是面向对象中的类Class。
面向对象的设计思想是抽象出类class,根据class创建实例instance。
数据封装、继承和多态是面向对象的三大特点。
Attribute
数据:属性(Property)
操作数据的函数:方法(Method)
类和实例
面向对象最重要的概念就是类(Class)和实例(Instance),必须牢记类是抽象的模板,比如Student类,而实例是根据类创建出来的一个个具体的“对象”,每个对象都拥有相同的方法,但各自的数据可能不同。
class Student(object):
pass
class
后面紧接着是类名,即Student
,类名通常是大写开头的单词,紧接着是(object)
,表示该类是从哪个类继承下来的,继承的概念我们后面再讲,通常,如果没有合适的继承类,就使用object
类,这是所有类最终都会继承的类。
定义好了Student
类,就可以根据Student
类创建出Student
的实例,创建实例是通过类名+()实现的:
bart = Student()
可以自由地给一个实例变量绑定属性,比如,给实例bart
绑定一个name
属性:
bart.name = 'Bart Simpson'
由于类可以起到模板的作用,因此,可以在创建实例的时候,把一些我们认为必须绑定的属性强制填写进去。通过定义一个特殊的__init__
方法,在创建实例的时候,就把name
,score
等属性绑上去:
class Student(object):
def __init__(self, name, score):
self.name = name
self.score = score
注意到__init__
方法的第一个参数永远是self
,表示创建的实例本身,因此,在__init__
方法内部,就可以把各种属性绑定到self
,因为self
就指向创建的实例本身。
有了__init__
方法,在创建实例的时候,就不能传入空的参数了,必须传入与__init__
方法匹配的参数,但self不需要传,Python解释器自己会把实例变量传进去:
>>> bart = Student('Bart Simpson', 59)
>>> bart.name
'Bart Simpson'
>>> bart.score
59
和普通的函数相比,在类中定义的函数只有一点不同,就是第一个参数永远是实例变量self
,并且,调用时,不用传递该参数。除此之外,类的方法和普通函数没有什么区别,所以,你仍然可以用默认参数、可变参数、关键字参数和命名关键字参数。
数据封装
既然Student
实例本身就拥有这些数据,要访问这些数据,就没有必要从外面的函数去访问,可以直接在Student
类的内部定义访问数据的函数,这样,就把“数据”给封装起来了。这些封装数据的函数是和Student
类本身是关联起来的,我们称之为类的方法:
class Student(object):
def __init__(self, name, score):
self.name = name
self.score = score
def print_score(self):
print('%s: %s' % (self.name, self.score))
要定义一个方法,除了第一个参数是self
外,其他和普通函数一样。要调用一个方法,只需要在实例变量上直接调用,除了self
不用传递,其他参数正常传入:
>>> bart.print_score()
Bart Simpson: 59
和静态语言不同,Python允许对实例变量绑定任何数据,也就是说,对于两个实例变量,虽然它们都是同一个类的不同实例,但拥有的变量名称和个数都可能不同。
访问限制
__xxx__
特殊变量
__xxx
私有变量
_xxx
公有变量,但提醒你不要随便使用
在Python中,变量名类似__xxx__
的,也就是以双下划线开头,并且以双下划线结尾的,是特殊变量,特殊变量是可以直接访问的,不是private变量,所以,不能用__name__
、__score__
这样的变量名。
如果要让内部属性不被外部访问,可以把属性的名称前加上两个下划线__
,在Python中,实例的变量名如果以__
开头,就变成了一个私有变量(private),只有内部可以访问,外部不能访问。
有些时候,你会看到以一个下划线开头的实例变量名,比如_name
,这样的实例变量外部是可以访问的,但是,按照约定俗成的规定,当你看到这样的变量时,意思就是,“虽然我可以被访问,但是,请把我视为私有变量,不要随意访问”。
双下划线开头的实例变量是不是一定不能从外部访问呢?其实也不是。不能直接访问__name
是因为Python解释器对外把__name
变量改成了_Student__name
,所以,仍然可以通过_Student__name
来访问__name
变量,但是强烈建议你不要这么干,因为不同版本的Python解释器可能会把__name
改成不同的变量名。
但是如果外部代码要获取name和score怎么办?可以给Student类增加get_name
和get_score
这样的方法:
class Student(object):
...
def get_name(self):
return self.__name
def get_score(self):
return self.__score
如果又要允许外部代码修改score怎么办?可以再给Student类增加set_score
方法:
lass Student(object):
...
def set_score(self, score):
self.__score = score
你也许会问,原先那种直接通过bart.score = 99
也可以修改啊,为什么要定义一个方法大费周折?因为在方法中,可以对参数做检查,避免传入无效的参数:
class Student(object):
...
def set_score(self, score):
if 0 <= score <= 100:
self.__score = score
else:
raise ValueError('bad score')
继承和多态
在OOP程序设计中,当我们定义一个class的时候,可以从某个现有的class继承,新的class称为子类(Subclass),而被继承的class称为基类、父类或超类(Base class、Super class)。
比如,我们已经编写了一个名为Animal
的class,有一个run()
方法可以直接打印:
class Animal(object):
def run(self):
print('Animal is running...')
当我们需要编写Dog
和Cat
类时,就可以直接从Animal
类继承:
class Dog(Animal):
pass
class Cat(Animal):
pass
对于Dog
来说,Animal
就是它的父类,对于Animal
来说,Dog
就是它的子类。Cat
和Dog
类似。当然,也可以对子类增加一些方法,比如Dog
类:
class Dog(Animal):
def run(self):
print('Dog is running...')
def eat(self):
print('Eating meat...')
- Aniamal
- Dog
- Cat
继承
多态
当子类和父类都存在相同的run()
方法时,我们说,子类的run()
覆盖了父类的run()
,在代码运行的时候,总是会调用子类的run()
。这样,我们就获得了继承的另一个好处,多态。
当我们定义一个class的时候,我们实际上就定义了一种数据类型。我们定义的数据类型和Python自带的数据类型,比如str、list、dict没什么两样:
a = list() # a是list类型
b = Animal() # b是Animal类型
c = Dog() # c是Dog类型
在继承关系中,如果一个实例的数据类型是某个子类,那它的数据类型也可以被看做是父类。但是,反过来就不行。
要理解多态的好处,我们还需要再编写一个函数,这个函数接受一个Animal
类型的变量:
def run_twice(animal):
animal.run()
animal.run()
新增一个Animal
的子类,不必对run_twice()
做任何修改,实际上,任何依赖Animal
作为参数的函数或者方法都可以不加修改地正常运行,原因就在于多态。由于Animal
类型有run()
方法,因此,传入的任意类型,只要是Animal
类或者子类,就会自动调用实际类型的run()
方法,这就是多态的意思。
著名的“开闭”原则:
对扩展开放:允许新增Animal
子类;
对修改封闭:不需要修改依赖Animal
类型的run_twice()
等函数。
静态语言 vs 动态语言
对于静态语言(例如Java)来说,如果需要传入Animal
类型,则传入的对象必须是Animal
类型或者它的子类,否则,将无法调用run()
方法。
对于Python这样的动态语言来说,则不一定需要传入Animal
类型。我们只需要保证传入的对象有一个run()
方法就可以了:
动态语言的“鸭子类型”:
一个对象只要“看起来像鸭子,走起路来像鸭子”,那它就可以被看做是鸭子。
获取对象信息
当我们拿到一个对象的引用时,如何知道这个对象是什么类型、有哪些方法呢?
使用type()
基本类型都可以用type()
判断,
如果要判断一个对象是否是函数怎么办?可以使用types
模块中定义的常量。
import types
使用isinstance()
对于class的继承关系来说,使用type()
就很不方便。我们要判断class的类型,可以使用isinstance()
函数。
使用dir()
如果要获得一个对象的所有属性和方法,可以使用dir()
函数,它返回一个包含字符串的list。
仅仅把属性和方法列出来是不够的,配合getattr()
、setattr()
以及hasattr()
,我们可以直接操作一个对象的状态。
通过内置的一系列函数,我们可以对任意一个Python对象进行剖析,拿到其内部的数据。要注意的是,只有在不知道对象信息的时候,我们才会去获取对象信息。
实例属性和类属性
由于Python是动态语言,根据类创建的实例可以任意绑定属性。
给实例绑定属性的方法是通过实例变量,或者通过self变量:
class Student(object):
def __init__(self, name):
self.name = name
s = Student('Bob')
s.score = 90
但是,如果Student
类本身需要绑定一个属性呢?可以直接在class中定义属性,这种属性是类属性,归Student
类所有:
class Student(object):
name = 'Student'
当我们定义了一个类属性后,这个属性虽然归类所有,但类的所有实例都可以访问到。来测试一下:
>>> class Student(object):
... name = 'Student'
...
>>> s = Student() # 创建实例s
>>> print(s.name) # 打印name属性,因为实例并没有name属性,所以会继续查找class的name属性
Student
>>> print(Student.name) # 打印类的name属性
Student
>>> s.name = 'Michael' # 给实例绑定name属性
>>> print(s.name) # 由于实例属性优先级比类属性高,因此,它会屏蔽掉类的name属性
Michael
>>> print(Student.name) # 但是类属性并未消失,用Student.name仍然可以访问
Student
>>> del s.name # 如果删除实例的name属性
>>> print(s.name) # 再次调用s.name,由于实例的name属性没有找到,类的name属性就显示出来了
Student
从上面的例子可以看出,在编写程序的时候,千万不要对实例属性和类属性使用相同的名字,相同名称的实例属性将屏蔽掉类属性。
实例属性属于各个实例所有,互不干扰;类属性属于类所有实例共享。
面向对象高级编程
数据封装、继承和多态只是面向对象程序设计中最基础的3个概念。在Python中,面向对象还有很多高级特性,允许我们写出非常强大的功能。
我们会讨论多重继承、定制类、元类等概念。
使用__slots__
我们可以给实例绑定一个属性,
>>> s = Student()
>>> s.name = 'Michael' # 动态给实例绑定一个属性
>>> print(s.name)
Michael
也可以绑定一个方法,
>>> def set_age(self, age): # 定义一个函数作为实例方法
... self.age = age
...
>>> from types import MethodType
>>> s.set_age = MethodType(set_age, s) # 给实例绑定一个方法
>>> s.set_age(25) # 调用实例方法
>>> s.age # 测试结果
25
给一个实例绑定的方法,对另一个实例是不起作用的,为了给所有实例都绑定方法,可以给class绑定方法:
>>> def set_score(self, score):
... self.score = score
...
>>> Student.set_score = set_score
通常情况下,上面的set_score
方法可以直接定义在class中,但动态绑定允许我们在程序运行的过程中动态给class加上功能,这在静态语言中很难实现。
使用__slots__
为了限制实例的添加的属性,Python允许在定义class的时候,定义一个特殊的__slots__
变量,来限制该class实例能添加的属性:
class Student(object):
__slots__ = ('name', 'age') # 用tuple定义允许绑定的属性名称
__slots__
定义的属性仅对当前类实例起作用,对继承的子类是不起作用的。
除非在子类中也定义__slots__
,这样,子类实例允许定义的属性就是自身的__slots__
加上父类的__slots__
。
使用@property
在绑定属性时,如果我们直接把属性暴露出去,虽然写起来很简单,但是,没办法检查参数,
为了限制score的范围,可以通过一个set_score()
方法来设置成绩,再通过一个get_score()
来获取成绩,这样,在set_score()
方法里,就可以检查参数:
class Student(object):
def get_score(self):
return self._score
def set_score(self, value):
if not isinstance(value, int):
raise ValueError('score must be an integer!')
if value < 0 or value > 100:
raise ValueError('score must between 0 ~ 100!')
self._score = value
但是,上面的调用方法又略显复杂,没有直接用属性这么直接简单。
有没有既能检查参数,又可以用类似属性这样简单的方式来访问类的变量呢?对于追求完美的Python程序员来说,这是必须要做到的!
还记得装饰器(decorator)可以给函数动态加上功能吗?对于类的方法,装饰器一样起作用。Python内置的@property
装饰器就是负责把一个方法变成属性调用的:
class Student(object):
@property
def score(self):
return self._score
@score.setter
def score(self, value):
if not isinstance(value, int):
raise ValueError('score must be an integer!')
if value < 0 or value > 100:
raise ValueError('score must between 0 ~ 100!')
self._score = value
@property
的实现比较复杂,我们先考察如何使用。把一个getter方法变成属性,只需要加上@property
就可以了,此时,@property
本身又创建了另一个装饰器@score.setter
,负责把一个setter方法变成属性赋值:
>>> s = Student()
>>> s.score = 60 # OK,实际转化为s.set_score(60)
>>> s.score # OK,实际转化为s.get_score()
60
>>> s.score = 9999
Traceback (most recent call last):
...
ValueError: score must between 0 ~ 100!
还可以定义只读属性,只定义getter方法,不定义setter方法就是一个只读属性。
多重继承
回忆一下Animal
类层次的设计,假设我们要实现以下4种动物:
- Dog - 狗
- Bat - 蝙蝠
- Parrot - 鹦鹉
- Ostrich - 鸵鸟
如果按照哺乳动物和鸟类归类,我们可以设计出这样的类的层次:
但是如果按照“能跑”和“能飞”来归类,我们就应该设计出这样的类的层次:
如果要把上面的两种分类都包含进来,我们就得设计更多的层次:
- 哺乳类:能跑的哺乳类,能飞的哺乳类;
- 鸟类:能跑的鸟类,能飞的鸟类。
这么一来,类的层次就复杂了。如果要再增加“宠物类”和“非宠物类”,这么搞下去,类的数量会呈指数增长,很明显这样设计是不行的。
正确的做法是采用多重继承。
1 首先,主要的类层次仍按照哺乳类和鸟类设计:
class Animal(object):
pass
# 大类:
class Mammal(Animal):
pass
class Bird(Animal):
pass
# 各种动物:
class Dog(Mammal):
pass
class Bat(Mammal):
pass
class Parrot(Bird):
pass
class Ostrich(Bird):
pass
2 现在,我们要给动物再加上Runnable
和Flyable
的功能。先定义好Runnable
和Flyable
的类:
class Runnable(object):
def run(self):
print('Running...')
class Flyable(object):
def fly(self):
print('Flying...')
对于需要Runnable
功能的动物,就多继承一个Runnable
,例如Dog
:
对于需要Flyable
功能的动物,就多继承一个Flyable
,例如Bat
:
class Dog(Mammal, Runnable):
pass
class Bat(Mammal, Flyable):
pass
通过多重继承,一个子类就可以同时获得多个父类的所有功能。
MixIn
在设计类的继承关系时,通常,主线都是单一继承下来的,例如,Ostrich
继承自Bird
。但是,如果需要“混入”额外的功能,通过多重继承就可以实现,比如,让Ostrich
除了继承自Bird
外,再同时继承Runnable
。这种设计通常称之为MixIn。
为了更好地看出继承关系,我们把Runnable
和Flyable
改为RunnableMixIn
和FlyableMixIn
。类似的,你还可以定义出肉食动物CarnivorousMixIn
和植食动物HerbivoresMixIn
,让某个动物同时拥有好几个MixIn:
class Dog(Mammal, RunnableMixIn, CarnivorousMixIn):
pass
MixIn的目的就是给一个类增加多个功能,这样,在设计类的时候,我们优先考虑通过多重继承来组合多个MixIn的功能,而不是设计多层次的复杂的继承关系。
Python自带的很多库也使用了MixIn。举个例子,Python自带了TCPServer
和UDPServer
这两类网络服务,而要同时服务多个用户就必须使用多进程或多线程模型,这两种模型由ForkingMixIn
和ThreadingMixIn
提供。通过组合,我们就可以创造出合适的服务来。
由于Python允许使用多重继承,因此,MixIn就是一种常见的设计。
只允许单一继承的语言(如Java)不能使用MixIn的设计。
定制类
看到类似__slots__
这种形如__xxx__
的变量或者函数名就要注意,这些在Python中是有特殊用途的:
__len__()
方法是为了能让class作用于len()
函数;
__slots__
用来限制类的属性;
除此之外,Python的class中还有许多这样有特殊用途的函数,可以帮助我们定制类。
__str__
print显示变量调用 __str__
直接显示变量调用__repr__
__iter__
如果一个类想被用于for ... in
循环,类似list或tuple那样,就必须实现一个__iter__()
方法,该方法返回一个迭代对象,然后,Python的for循环就会不断调用该迭代对象的__next__()
方法拿到循环的下一个值,直到遇到StopIteration
错误时退出循环。
__getitem__
迭代对象:
下标__getitem__
切片
1__getitem__()
传入的参数可能是一个int
,也可能是一个切片对象slice
,所以要做判断;
__getitem__、__setitem__ 和 __delitem__
2没有对step参数作处理
3没有对负数作处理
如果把对象看成dict
,__getitem__()
的参数也可能是一个可以作key的object,与之对应的是__setitem__()
方法。
还有一个__delitem__()
方法,用于删除某个元素。
总之,通过上面的方法,我们自己定义的类表现得和Python自带的list、tuple、dict没什么区别,这完全归功于动态语言的“鸭子类型”,不需要强制继承某个接口。
__getattr__
正常情况下,当我们调用类的方法或属性时,如果不存在,就会报错。要避免这个错误,除了可以加上一个score
属性外,Python还有另一个机制,那就是写一个__getattr__()
方法,动态返回一个属性。返回函数也是完全可以的。
注意,只有在没有找到属性的情况下,才调用__getattr__
,已有的属性,比如name
,不会在__getattr__
中查找。此外,注意到任意调用如s.abc
都会返回None
,这是因为我们定义的__getattr__
默认返回就是None
。
要让class只响应特定的几个属性,我们就要按照约定,抛出AttributeError
的错误。
__call__
一个对象实例可以有自己的属性和方法,当我们调用实例方法时,我们用instance.method()
来调用。能不能直接在实例本身上调用呢?在Python中,答案是肯定的。
任何类,只需要定义一个__call__()
方法,就可以直接对实例进行调用。__call__()
还可以定义参数。
对实例进行直接调用就好比对一个函数进行调用一样,所以你完全可以把对象看成函数,把函数看成对象,因为这两者之间本来就没啥根本的区别。
如果你把对象看成函数,那么函数本身其实也可以在运行期动态创建出来,因为类的实例都是运行期创建出来的,这么一来,我们就模糊了对象和函数的界限。
那么,怎么判断一个变量是对象还是函数呢?其实,更多的时候,我们需要判断的是一个对象是否能被调用。函数一定能被调用,对象可能能被调用。能被调用的对象就是一个`Callable对象,比如函数和我们上面定义的带有call()的类实例:
使用枚举类
当我们需要定义常量时,一个办法是用大写变量通过整数来定义,例如月份:
JAN = 1
FEB = 2
MAR = 3
...
NOV = 11
DEC = 12
好处是简单,缺点是类型是int
,并且仍然是变量。
更好的方法是为这样的枚举类型定义一个class类型,然后,每个常量都是class的一个唯一实例。
Python提供了Enum类来实现这个功能:
from enum import Enum
Month = Enum('Month', ('Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'))
这样我们就获得了Month
类型的枚举类,可以直接使用Month.Jan
来引用一个常量,
rom enum import Enum
Months = Enum('Month', ('Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'))
print(Months.Jan)
Month.Jan
或者枚举它的所有成员:
for name, member in Month.__members__.items():
print(name, '=>', member, ',', member.value)
Jan => Month.Jan , 1
Feb => Month.Feb , 2
Mar => Month.Mar , 3
Apr => Month.Apr , 4
May => Month.May , 5
Jun => Month.Jun , 6
Jul => Month.Jul , 7
Aug => Month.Aug , 8
Sep => Month.Sep , 9
Oct => Month.Oct , 10
Nov => Month.Nov , 11
Dec => Month.Dec , 12
value
属性是自动赋给成员的int
常量,默认从1
开始计数。
如果需要更精确地控制枚举类型,可以从Enum
派生出自定义类:
from enum import Enum, unique
@unique
class Weekday(Enum):
Sun = 0 # Sun的value被设定为0
Mon = 1
Tue = 2
Wed = 3
Thu = 4
Fri = 5
Sat = 6
@unique
装饰器可以帮助我们检查保证没有重复值。
访问这些枚举类型可以有若干种方法:
>>> day1 = Weekday.Mon
>>> print(day1)
Weekday.Mon
>>> print(Weekday.Tue)
Weekday.Tue
>>> print(Weekday['Tue'])
Weekday.Tue
>>> print(Weekday.Tue.value)
2
>>> print(Weekday(1))
Weekday.Mon
>>> print(day1 == Weekday(1))
True
>>> Weekday(7)
Traceback (most recent call last):
...
ValueError: 7 is not a valid Weekday
>>> for name, member in Weekday.__members__.items():
... print(name, '=>', member)
...
Sun => Weekday.Sun
Mon => Weekday.Mon
Tue => Weekday.Tue
Wed => Weekday.Wed
Thu => Weekday.Thu
Fri => Weekday.Fri
Sat => Weekday.Sat
可见,既可以用成员名称引用枚举常量,又可以直接根据value
的值获得枚举常量。
使用元类
type()
动态语言和静态语言最大的不同,就是函数和类的定义,不是编译时定义的,而是运行时动态创建的。
type()
函数可以查看一个类型或变量的类型;
我们说class的定义是运行时动态创建的,而创建class的方法就是使用type()
函数。
type()
函数既可以返回一个对象的类型,又可以创建出新的类型。
要创建一个class对象,type()函数依次传入3个参数:
- class的名称;
- 继承的父类集合,注意Python支持多重继承,如果只有一个父类,别忘了tuple的单元素写法;
- class的方法名称与函数绑定,这里我们把函数fn绑定到方法名hello上。
metaclass
除了使用type()
动态创建类以外,要控制类的创建行为,还可以使用metaclass。
metaclass,直译为元类,简单的解释就是:
先定义metaclass,就可以创建类,最后创建实例。
按照默认习惯,metaclass的类名总是以Metaclass结尾。
metaclass是类的模板,所以必须从type
类型派生。
SDK(Software Development Kit, 软件开发工具包)
API(Application Programming Interface, 应用程序编程接口)