7. Linear-Time Selection

问题:We aim to find the i-th smallest element from a set A containing n elements, 1 <= i <= n.

思路: The general strategy is to find a pivot element x in A such that a constant fractional number of elements in A can be discarded for further consideration.

The key to the proposed algorithm is how to find such a pivot element x within each iteration efficiently!

Linear-Time Selection

Step 1. Divide the n elements into n/5 groups of 5 elements each (each group contains exactly 5 elements except the last group which may contain less than 5 elements).

Step 2. Find the median of each group by any sorting method.
(If the number of elements in the last group is even, take either one of the two medians).
Consequently,a median sequence consisting of group medians is formed, which contains n/5 elements exactly with each group having its median there.

Step 3. Find the median x from the median sequence of n/5 “group median” elements, using the linear selection algorithm recursively, where element x is the pivot element that will be used to partition the set A into three disjoint subsets R1, R2 and R3.

Step 4. Partition the n-element set A into three disjoint subsets R1, R2 and R3, using the found x (as the pivot element), i.e., the set A is partitioned into three disjoints subsets R1, R2, and R3 . R2 = { x}


Analysis of the Linear Selection Algorithm

Step 1. Partition the n elements into n/5 groups, it take linear time to scan the n elements, i.e., O(n) time

Step 2. Perform sorting within each group, thus it takes constant time to sort the 5-element in each group. In total, this step takes n/5 * O(1) = O(n) time, where each group contains no more than 5 elements, its sorting time is O(1).

Step 3. Find the median x of the median sequence of n/5 elements, which takes T (n/5) time. Notice that the running time of the selection algorithm is applicable for any parameter i with 1 <= i <= |A|.

Step 4. Use the value of x to partition the set A into three disjoint subsets R1, R2 and R3, it takes O(n) time

Step 5. If |R1| < i <= |R1|+|R2|, done.
Otherwise, call the selection algorithm either on R1 or R3, not both of them, it takes max{T (|R1|), T (|R3|)}. Fortunately we can show that both |R1| and |R3| are less than 7n/10 + 6, i.e., a fraction length of the original length n. Thus, this step takes T (7n/10 + 6) time.

证明:这里有n个元素,有n/5个组。通过一系列比较,可以得到median x 至少要大于3((n/5)/2 - 2)个数。减2是因为要减去它自己本身和最后一个少于五个元素的数组。

所以the running time of the linear selection
algorithm: T(n) < T(n/5) + T(n - 3*((n/5) / 2 - 2)) + O(n) (n > 140)
or T(n) = O(1) ( n <= 140)

To prove the time complexity of the linear selection
algorithm is O(n), I used the Substitution method

Demenstration
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,752评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,100评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,244评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,099评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,210评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,307评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,346评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,133评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,546评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,849评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,019评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,702评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,331评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,030评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,260评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,871评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,898评论 2 351

推荐阅读更多精彩内容