提取阿里云DATAV GeoAtlas 地图 json
本次文章介绍如何在阿里云DATAV GeoAtlas的在线地图选择器上,提取地图信息。加载到本地,完成ggplot
可视化操作。
说下为什么要从阿里云提取地图信息,主要有一下4点:
- 在R里面加载地图最麻烦的就是读取shp文件太大,加载缓慢
-
ggplot
绘制shp
文件太耗费时间,导致Rstudio
沉默5-10分钟 - 标准地图难找(
bou4.shp
已经过时) - 阿里云数据获取简单直接,
ggplot
绘制快速方便。
不需要爬虫知识,只要sf
包即可,一步到胃位。
上述的网站只能精确到区县级json
数据,而乡镇级json
一般需要第三方购买。
1.China地图
根据DATAV GeoAtlas题干的json文件,直接用read_sf
读取。然后ggplot显示。可以看到,完整的中国地图及包含的数据,每个省及省内所含的市(childrenNum)数量。主要每个地区都有对应的 adcode;adcode很关键,怎么知道adcode,如下:
library(tidyverse)
library(sf)
rm(list = ls())
CHN = read_sf("https://geo.datav.aliyun.com/areas_v2/bound/100000_full.json")
# only keep code name childrenNum
> CHN %>% select(adcode,name,childrenNum)
Simple feature collection with 35 features and 3 fields
geometry type: MULTIPOLYGON
dimension: XY
bbox: xmin: 73.50235 ymin: 3.397162 xmax: 135.0957 ymax: 53.56327
geographic CRS: WGS 84
# A tibble: 35 x 4
adcode name childrenNum geometry
<chr> <chr> <int> <MULTIPOLYGON [°]>
1 110000 北京市 16 (((116.8121 39.61602, 116.7906 39.5962, 116.7…
2 120000 天津市 16 (((117.7656 39.40044, 117.6997 39.40737, 117.…
3 130000 河北省 11 (((114.1346 40.73738, 114.0447 40.83071, 114.…
4 140000 山西省 11 (((110.3793 34.60065, 110.2955 34.61099, 110.…
5 150000 内蒙古自治区… 12 (((119.2395 41.3147, 119.1977 41.28278, 119.1…
6 210000 辽宁省 14 (((121.3048 42.43557, 121.3048 42.43557, 121.…
7 220000 吉林省 9 (((125.7075 40.86691, 125.6878 40.89768, 125.…
8 230000 黑龙江省 13 (((131.3046 43.50203, 131.2941 43.46991, 131.…
9 310000 上海市 16 (((120.9013 31.01767, 120.8921 31.09405, 120.…
10 320000 江苏省 13 (((119.3061 35.07651, 119.2383 35.04859, 119.…
#plot
ggplot()+
geom_sf(data=CHN,fill=NA)
2.安徽省地图
我们知道一个省的adcode 就可以获取该省所包含的市及县区地图数据。下面我们来看下,获取安徽省地图:
- 仅有安徽省轮廓(json)
https://geo.datav.aliyun.com/areas_v2/bound/340000.json
- 安徽省及所有市 (json 包含的子区域)
https://geo.datav.aliyun.com/areas_v2/bound/340000_full.json
# anhui
df_map1=read_sf("https://geo.datav.aliyun.com/areas_v2/bound/340000.json")
df_map2=read_sf("https://geo.datav.aliyun.com/areas_v2/bound/340000_full.json")
p1=ggplot()+
geom_sf(data=df_map1,fill=NA)
p2=ggplot()+
geom_sf(data=df_map2,fill=NA)
p1+p2
3.安徽省-合肥市地图
上面的地图没有县级的图层,那么我们来获取合肥市县级地图,这里用到安徽子区域里面的adcode
来定位合肥市,及合肥市所包含的区县个数(childrenNum
)
# hefei
df_map2 %>% st_drop_geometry()%>% select(adcode, name,childrenNum) %>% head()
df_map1=read_sf("https://geo.datav.aliyun.com/areas_v2/bound/340100.json")
df_map2=read_sf("https://geo.datav.aliyun.com/areas_v2/bound/340100_full.json")
p1=ggplot()+
geom_sf(data=df_map1,fill=NA)
p2=ggplot()+
geom_sf(data=df_map2,fill=NA)
p1+p2
4.安徽省所有区县地图
这里只要写个循环,将安徽省所有的市子区域进行遍历,然后合并即可,注意是根据https://geo.datav.aliyun.com/areas_v2/bound/340000_full.json
数据里面的childrenNum
,所以将childrenNum
都提取出来。
### for one province
df_map1=read_sf("https://geo.datav.aliyun.com/areas_v2/bound/340000.json")
df_map2=read_sf("https://geo.datav.aliyun.com/areas_v2/bound/340000_full.json")
a = df_map2 %>%
select(adcode,name) %>% st_drop_geometry()
a
# A tibble: 16 x 2
adcode name
* <int> <chr>
1 340100 合肥市
2 340200 芜湖市
3 340300 蚌埠市
4 340400 淮南市
5 340500 马鞍山市
6 340600 淮北市
7 340700 铜陵市
8 340800 安庆市
9 341000 黄山市
10 341100 滁州市
11 341200 阜阳市
12 341300 宿州市
13 341500 六安市
14 341600 亳州市
15 341700 池州市
16 341800 宣城市
anhui=c()
for (i in 1:dim(a)[1]) {
b_code=a %>% slice(i) %>% select(adcode) %>% pull()
b_name=a %>% slice(i) %>% select(name) %>% pull()
df_county=read_sf(paste0("https://geo.datav.aliyun.com/areas_v2/bound/",b_code,"_full.json")) %>%
mutate(city=b_name,.before = 2)
anhui=anhui %>% bind_rows(df_county)
}
ggplot()+
geom_sf(data=anhui,fill=NA)+
geom_sf(data = df_map2,fill=0.2,color="#C77CFF")+
geom_sf(data = df_map1,fill=0.2,color="#F8766D")
4.中国所有县地图
不再赘述; 附上code;另外将下载好的json数据,保存到本地,如果阿里云需要提供API接口访问,以后就不能在线获取了。建议保存本地备用。
如何保存,见保存json
(PS: )
# for whole china
map1=read_sf("https://geo.datav.aliyun.com/areas_v2/bound/100000.json") %>% st_transform(crs=4236)
map2=read_sf("https://geo.datav.aliyun.com/areas_v2/bound/100000_full.json")
# plot
p1=ggplot()+
geom_sf(data=map1,fill=NA)
p2=ggplot()+
geom_sf(data=map2,fill=NA)
p1+p2
# get all provinces
province_a = map2 %>%
select(adcode,name) %>% st_drop_geometry() %>% slice(-35)
# 1.only province
china1=c()
for (i in c(3:8,10:21,23:31)) {
# get province
province_code=province_a %>% slice(i) %>% select(adcode) %>% pull()
province_name=province_a %>% slice(i) %>% select(name) %>% pull()
df_pro=read_sf(paste0("https://geo.datav.aliyun.com/areas_v2/bound/",province_code,"_full.json")) %>%
mutate(province=b_name,.before = 2) %>%
select(adcode,province,name,childrenNum) %>% mutate(adcode=as.character(adcode))
print(paste0(i,"-",province_name))
# get city
city_a=df_pro %>%
select(adcode,name) %>% st_drop_geometry()
df_province=c()
for (j in 1:dim(city_a)[1]) {
city_code=city_a %>% slice(j) %>% select(adcode) %>% pull()
city_name=city_a %>% slice(j) %>% select(name) %>% pull()
df_city=read_sf(paste0("https://geo.datav.aliyun.com/areas_v2/bound/",city_code,"_full.json")) %>%
mutate(city=city_name,.before = 2) %>%
select(adcode,city,name) %>% mutate(adcode=as.numeric(adcode))
# bind province cities
df_province= df_province %>% bind_rows(df_city)
}
df_province=df_province %>% mutate(province=b_name,.before = 2)
# bind all
china1=china1 %>% bind_rows(df_province)
}
# 2.Beijing,chongqing,shanghai,tianjing,taiwan,Hongkong,Macao
china2=c()
for (i in c(1,2,9,22,32:34)) {
b_code=province_a %>% slice(i) %>% select(adcode) %>% pull()
b_name=province_a %>% slice(i) %>% select(name) %>% pull()
df_county=read_sf(paste0("https://geo.datav.aliyun.com/areas_v2/bound/",b_code,"_full.json")) %>%
mutate(province=b_name,.before = 2) %>%
mutate(city=b_name,.before = 3) %>%
select(adcode,province,city,name) %>% mutate(adcode=as.numeric(adcode))
print(i)
china2=china2 %>% bind_rows(df_county)
}
# 3.China
china=china1 %>% bind_rows(china2)
ggplot(china)+geom_sf()
另外,还可在线绘制json,然后用保存到R绘制
参考
1.DataV.GeoAtlas 全国GeoJSON数据(县区级)
2.R 获取中国标准官方地图(含官方网站)
3.在线生成地图geojson数据格式以及手绘乡镇级json数据