核岭回归与SVR的比较

核岭回归与SVR的比较

import time

import numpy as np

from sklearn.svm import SVR

from sklearn.model_selection import GridSearchCV

from sklearn.model_selection import learning_curve

from sklearn.kernel_ridge import KernelRidge

import matplotlib.pyplot as plt

rng = np.random.RandomState(0)

plt.rcParams['font.sans-serif'] = ['SimHei']

plt.rcParams['axes.unicode_minus'] = False

# 获得样本数据

X = 5 * rng.rand(10000, 1)

y = np.sin(X).ravel()

# 对目标增加噪音

y[::5] += 3 * (0.5 - rng.rand(X.shape[0] // 5))

X_plot = np.linspace(0, 5, 100000)[:, None]

# 拟合回归模型

train_size = 100

svr = GridSearchCV(SVR(kernel='rbf', gamma=0.1),

                  param_grid={"C": [1e0, 1e1, 1e2, 1e3],

                              "gamma": np.logspace(-2, 2, 5)})

kr = GridSearchCV(KernelRidge(kernel='rbf', gamma=0.1),

                  param_grid={"alpha": [1e0, 0.1, 1e-2, 1e-3],

                              "gamma": np.logspace(-2, 2, 5)})

t0 = time.time()

svr.fit(X[:train_size], y[:train_size])

svr_fit = time.time() - t0

print("SVR complexity and bandwidth selected and model fitted in %.3f s"

      % svr_fit)

t0 = time.time()

kr.fit(X[:train_size], y[:train_size])

kr_fit = time.time() - t0

print("KRR complexity and bandwidth selected and model fitted in %.3f s"

      % kr_fit)

sv_ratio = svr.best_estimator_.support_.shape[0] / train_size

print("Support vector ratio: %.3f" % sv_ratio)

t0 = time.time()

y_svr = svr.predict(X_plot)

svr_predict = time.time() - t0

print("SVR prediction for %d inputs in %.3f s"

      % (X_plot.shape[0], svr_predict))

t0 = time.time()

y_kr = kr.predict(X_plot)

kr_predict = time.time() - t0

print("KRR prediction for %d inputs in %.3f s"

      % (X_plot.shape[0], kr_predict))

# 查看结果

sv_ind = svr.best_estimator_.support_

plt.scatter(X[sv_ind], y[sv_ind], c='r', s=50, label='SVR support vectors',

            zorder=2, edgecolors=(0, 0, 0))

plt.scatter(X[:100], y[:100], c='k', label='data', zorder=1,

            edgecolors=(0, 0, 0))

plt.plot(X_plot, y_svr, c='r',

        label='SVR (fit: %.3fs, predict: %.3fs)' % (svr_fit, svr_predict))

plt.plot(X_plot, y_kr, c='g',

        label='KRR (fit: %.3fs, predict: %.3fs)' % (kr_fit, kr_predict))

plt.xlabel('data')

plt.ylabel('target')

plt.title('SVR对核岭')

plt.legend()

# 可视化训练和预测时间

plt.figure()

# 获取样本数据

X = 5 * rng.rand(10000, 1)

y = np.sin(X).ravel()

y[::5] += 3 * (0.5 - rng.rand(X.shape[0] // 5))

sizes = np.logspace(1, 4, 7).astype(np.int)

for name, estimator in {"KRR": KernelRidge(kernel='rbf', alpha=0.1,

                                          gamma=10),

                        "SVR": SVR(kernel='rbf', C=1e1, gamma=10)}.items():

    train_time = []

    test_time = []

    for train_test_size in sizes:

        t0 = time.time()

        estimator.fit(X[:train_test_size], y[:train_test_size])

        train_time.append(time.time() - t0)

        t0 = time.time()

        estimator.predict(X_plot[:1000])

        test_time.append(time.time() - t0)

    plt.plot(sizes, train_time, 'o-', color="r" if name == "SVR" else "g",

            label="%s (train)" % name)

    plt.plot(sizes, test_time, 'o--', color="r" if name == "SVR" else "g",

            label="%s (test)" % name)

plt.xscale("log")

plt.yscale("log")

plt.xlabel("Train size")

plt.ylabel("Time (seconds)")

plt.title('执行时间')

plt.legend(loc="best")

# 可视化学习曲线

plt.figure()

svr = SVR(kernel='rbf', C=1e1, gamma=0.1)

kr = KernelRidge(kernel='rbf', alpha=0.1, gamma=0.1)

train_sizes, train_scores_svr, test_scores_svr = \

    learning_curve(svr, X[:100], y[:100], train_sizes=np.linspace(0.1, 1, 10),

                  scoring="neg_mean_squared_error", cv=10)

train_sizes_abs, train_scores_kr, test_scores_kr = \

    learning_curve(kr, X[:100], y[:100], train_sizes=np.linspace(0.1, 1, 10),

                  scoring="neg_mean_squared_error", cv=10)

plt.plot(train_sizes, -test_scores_svr.mean(1), 'o-', color="r",

        label="SVR")

plt.plot(train_sizes, -test_scores_kr.mean(1), 'o-', color="g",

        label="KRR")

plt.xlabel("Train size")

plt.ylabel("Mean Squared Error")

plt.title('学习曲线')

plt.legend(loc="best")

plt.show()


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容