Reformer

论文标题:REFORMER: THE EFFICIENT TRANSFORMER

论文链接https://arxiv.org/abs/2001.04451

提出机构:U.C. Berkeley & Google Research

收录情况:ICLR2020


Reformer的优化目标:使Transformer节约内存加速训练处理长序列输入

性能结论:

Reformer相比Transformer的效率优化与sequence length有关,因此在长文本任务上效果才比较明显(论文实验在64K的长文本任务上进行),短文本任务上加速效果不明显。

实现细节:

  • 使用局部敏感哈希(LSH)注意力代替传统多头注意力

  • 使用可逆层(reversible layers),只存储单层激活值的一份拷贝

  • 把FF层里的激活值进行切分

使用上述三种方法,本文在长达64K的文本任务和长达12K的图像任务上进行试验,结果表明Reformer既节约内存提升效率,又拓展了Transformer处理长序列的能力。

局部敏感哈希注意力LSH

Transformer中的注意力计算需要让矩阵Q和K的转置相乘。我们假定它们的形状都是[ batch_size, length, dimension ],那么如果序列长度有64K,就有得到一个64K*64K的矩阵,显然是不现实的。

对于局部敏感哈希注意力而言,需要 Q=K,以及 V,它们的 shape 都是 [batch size,length,d_model],而重点关注的是 QK^T,有着 [batch size,length,length] 的 shape。进一步来说,对于每个 q_i,实际需要关注的是它们在 key 的接近值。例如,如果 K 是 64K,对于每个 q_i,只需要考虑一小部分,如 32 个到 64 个最接近的 keys。

这样一来就需要找到最近邻的值,这就需要局部敏感哈希(LSH)了,它能够快速在高维空间中找到最近邻。一个局部敏感哈希算法可以将每个向量 x 转换为 hash h(x),和这个 x 靠近的哈希更有可能有着相同的哈希值,而距离远的则不会。在这里,研究者希望最近的向量最可能得到相同的哈希值,或者 hash-bucket 大小相似的更有可能相同。

可逆Transformer

虽然 LSH 提升了时间效率,但仍然存在一个内存的问题。当训练一个具有梯度下降的多层模型时,需要保存每一层的激活值,以便在向后传递中使用。一个典型的 Transformer 模型有 12 个或更多的层,因此,如果用来缓存来自每个层的值,那么内存很快就会用完。

在 Reformer 中实现的第二个新方法是在反向传播期间按需重新计算每个层的输入,而不是将其存储在内存中。这是通过使用可逆层来实现的,其中来自网络的最后一层的激活被用来恢复来自任何中间层的激活,这相当于反向运行网络。在一个典型的残差网络中,栈中的每一层都不断地增加通过网络的向量。相反,可逆层对每个层有两组激活。一个遵循刚才描述的标准过程,并从一个层逐步更新到下一个层,但是另一个只捕获对第一个层的更改。因此,要反向运行网络,只需减去应用于每个层的激活。

实验结果

下图是不同的方法在这两个数据集上的表现,可以看到,无论是共享QK还是可逆Transformer,都不会影响效果。

下图是不同哈希桶数的LSH注意力的表现。显然,数量越多,效果越好,这是因为关注就越精确,同时模型代价就越高。

最后是Reformer的层数对于性能的影响。下图(左)是Big Reformer随层变化的不同效果,20层依然无压力。而下图(右)是普通注意力和LSH注意力在不同序列长度的速度比较,当序列很长的时候,LSH具有显著的优势。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,335评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,895评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,766评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,918评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,042评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,169评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,219评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,976评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,393评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,711评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,876评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,562评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,193评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,903评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,699评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,764评论 2 351

推荐阅读更多精彩内容