简谈Python3关键字nonlocal使用场景

下面是之前提过的有待提升效率的计算移动平均的方法:

def make_averager():
    series = []
    def averager(new_value):
        series.append(new_value)
        total = sum(series)
        return total/len(series)
    return averager

我们在文章简谈Python闭包中设计的计算移动平均的方法效率并不高,原因是我们存储了所有的历史数据在列表中,然后在每次调用averager时使用sum求和。要实现同样的功能,更好的实现方法是只存储当前的总值和元素个数,使用这两个值计算移动平均值即可。

直观来思考,我们可以对代码进行如下改进(注意:代码有缺陷!)

def make_averager(): 
    count = 0
    total = 0
    def averager(new_value): 
        count += 1
        total += new_value 
        return total / count
    return averager

尝试使用该函数,会得到如下的结果:

>>> avg = make_averager()
>>> avg(10)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 5, in averager
UnboundLocalError: local variable 'count' referenced before assignment

提示错误为变量count在赋值前进行了引用,实际上,total也存在相同的问题,只是count变量处提前抛出了UnboundLocalError异常。接下来进一步解释,首先我们需要明白一个前提,在Python中,对于一个不可变数据类型比如上述示例中的count,count+=1和count=count+1是等效的。对于可变数据类型的讨论,可以参考文章浅析Python中列表操作之*和*=

因此,我们在averager的定义体中为count赋值了,这会把count变成局部变量,total变量也受这个问题影响。

先前版本没遇到这个问题,因为我们没有给series赋值,我们只是调用series.append,并把它传给sum和len。也就是说,我们利用了列表是可变的对象这一事实。

但是对数字、字符串、元组等不可变类型来说,只能读取,不能更新。如果尝试重新绑定,例如count=count+1,其实会隐式创建局部变量count。这样,count就不是自由变量了,因此不会保存在闭包中。

为了解决这个问题,Python3引入了nonlocal声明。它的作用是把变量标记为自由变量,即使在函数中为变量赋予新值了,也会变成自由变量。如果为nonlocal声明的变量赋予新值,闭包中保存的绑定会更新。最新版make_averager的正确实现如下:

def make_averager():
    count = 0
    total = 0
    def averager(new_value):
        nonlocal count, total
        count += 1
        total += new_value
        return total / count
    return averager

在Python2中没有nonlocal关键字。如果要实现上面的功能需要变通的方法。基本上,这种处理方式是把内部函数需要修改的变量(如count和total)存储为可变对象(如字典或简单的实例)的元素或属性,并且把那个对象绑定给一个自由变量。
至此,我们了解了Python闭包,接下来可以使用嵌套函数正式实现装饰器了。


欢迎关注微信公众号:CodeWorks
问题或建议,请公众号留言,欢迎非抬杠式讨论

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,458评论 6 513
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,030评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,879评论 0 358
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,278评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,296评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,019评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,633评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,541评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,068评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,181评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,318评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,991评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,670评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,183评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,302评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,655评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,327评论 2 358

推荐阅读更多精彩内容