实习第十四天(递归Recursion)

递归思想


递归指的是一个过程:函数不断引用自身,直到引用的对象已知。递归就是在函数内部调用自己的函数被称之为递归。
周末你带着女朋友去电影院看电影,女朋友问你,咱们现在坐在第几排啊?电影院里面太黑了,看不清,没法数,现在你怎么办?
递归思想:你就问前面一排的人他是第几排,你想只要在他的数字上加一,就知道自己在哪一排了。但是,前面的人也看不清啊,所以他也问他前面的人。就这样一排一排往前问,直到问到第一排的人,说我在第一排,然后再这样一排一排再把数字传回来。直到你前面的人告诉你他在哪一排,于是你就知道答案了。
这就是一个非常标准的递归求解问题的分解过程,去的过程叫“递”,回来的过程叫“归”。基本上,所有的递归问题都可以用递推公式来表示。
刚刚这个例子,我们用递推公式将它表示出来就是这样的:
f(n) = f(n-1) + 1其中,f(1) = 1
f(n) 表示你想知道自己在哪一排,f(n-1) 表示前面一排所在的排数,f(1)=1 表示第一排的人知道自己在第一排。


递归的三个条件

刚刚这个例子是非常典型的递归,那究竟什么样的问题可以用递归来解决呢?我总结了三个条件,只要同时满足以下三个条件,就可以用递归来解决。

  • 一个问题的解可以分解为几个子问题的解
    何为子问题?子问题就是数据规模更小的问题。比如,前面讲的电影院的例子,你要知道,“自己在哪一排”的问题,可以分解为“前一排的人在哪一排”这样一个子问题。
  • 这个问题与分解之后的子问题,除了数据规模不同,求解思路完全一样
    比如电影院那个例子,你求解“自己在哪一排”的思路,和前面一排人求解“自己在哪一排”的思路,是一模一样的。
  • 存在递归终止条件
    把问题分解为子问题,把子问题再分解为子子问题,一层一层分解下去,不能存在无限循环,这就需要有终止条件。
    还是电影院的例子,第一排的人不需要再继续询问任何人,就知道自己在哪一排,也就是 f(1)=1,这就是递归的终止条件。

编写递归案例

假如这里有 n 个台阶,每次你可以跨 1 个台阶或者 2 个台阶,请问走这 n 个台阶有多少种走法?如果有 7 个台阶,你可以 2,2,2,1 这样子上去,也可以 1,2,1,1,2 这样子上去,总之走法有很多,那如何用编程求得总共有多少种走法呢?
我们仔细想下,实际上,可以根据第一步的走法把所有走法分为两类,第一类是第一步走了 1 个台阶,另一类是第一步走了 2 个台阶。所以 n 个台阶的走法就等于先走 1 阶后,n-1 个台阶的走法 加上先走 2 阶后,n-2 个台阶的走法。用公式表示就是:

f (n) = f(n  - 1) + f(n - 2)

有了递推公式,递归代码基本上就完成了一半。我们再来看下终止条件。当有一个台阶时,我们不需要再继续递归,就只有一种走法。所以 f(1)=1。这个递归终止条件足够吗?我们可以用 n=2,n=3 这样比较小的数试验一下。
n=2 时,f(2)=f(1)+f(0)。如果递归终止条件只有一个 f(1)=1,那 f(2) 就无法求解了。所以除了 f(1)=1 这一个递归终止条件外,还要有 f(0)=1,表示走 0 个台阶有一种走法,不过这样子看起来就不符合正常的逻辑思维了。所以,我们可以把 f(2)=2 作为一种终止条件,表示走 2 个台阶,有两种走法,一步走完或者分两步来走。
所以,递归终止条件就是 f(1)=1,f(2)=2。这个时候,你可以再拿 n=3,n=4 来验证一下,这个终止条件是否足够并且正确。
我们把递归终止条件和刚刚得到的递推公式放到一起就是这样的:

f(1) = 1;
f(2) = 2;
f(n) = f(n-1)+f(n-2)

有了这个公式,我们转化成递归代码就简单多了。最终的递归代码是这样的:

  if (n == 1) return 1;
  if (n == 2) return 2;
  return f(n-1) + f(n-2);
}

总结:

  • 一、什么是递归?
    1.递归是一种非常高效、简洁的编码技巧,一种应用非常广泛的算法,比如DFS深度优先搜索、前中后序二叉树遍历等都是使用递归。
    2.方法或函数调用自身的方式称为递归调用,调用称为递,返回称为归。
    3.基本上,所有的递归问题都可以用递推公式来表示,比如
    f(n) = f(n-1) + 1;
    f(n) = f(n-1) + f(n-2);
    f(n)=n*f(n-1);
  • 二、为什么使用递归?递归的优缺点?
    1.优点:代码的表达力很强,写起来简洁。
    2.缺点:空间复杂度高、有堆栈溢出风险、存在重复计算、过多的函数调用会耗时较多等问题。
  • 三、什么样的问题可以用递归解决呢?
    一个问题只要同时满足以下3个条件,就可以用递归来解决:
    1.问题的解可以分解为几个子问题的解。何为子问题?就是数据规模更小的问题。
    2.问题与子问题,除了数据规模不同,求解思路完全一样
    3.存在递归终止条件
  • 四、如何实现递归?
    1.递归代码编写
    写递归代码的关键就是找到如何将大问题分解为小问题的规律,并且基于此写出递推公式,然后再推敲终止条件,最后将递推公式和终止条件翻译成代码。
    2.递归代码理解
    对于递归代码,若试图想清楚整个递和归的过程,实际上是进入了一个思维误区。
    那该如何理解递归代码呢?如果一个问题A可以分解为若干个子问题B、C、D,你可以假设子问题B、C、D已经解决。而且,你只需要思考问题A与子问题B、C、D两层之间的关系即可,不需要一层层往下思考子问题与子子问题,子子问题与子子子问题之间的关系。屏蔽掉递归细节,这样子理解起来就简单多了。
    因此,理解递归代码,就把它抽象成一个递推公式,不用想一层层的调用关系,不要试图用人脑去分解递归的每个步骤。
  • 五、递归常见问题及解决方案
    1.警惕堆栈溢出:可以声明一个全局变量来控制递归的深度,从而避免堆栈溢出。
    2.警惕重复计算:通过某种数据结构来保存已经求解过的值,从而避免重复计算。
  • 六、如何将递归改写为非递归代码?
    笼统的讲,所有的递归代码都可以改写为迭代循环的非递归写法。如何做?抽象出递推公式、初始值和边界条件,然后用迭代循环实现。
    参考如何用三行代码找到“最终推荐人

实例

实例

  • 阶乘
def fact(n):

    if n==1:

        return 1

    return n * fact(n -1)

上面就是一个实现阶乘的递归函数,我们来试一试。

>>> fact(1)
1
>>> fact(5)
120

可能有点懵吧,来看一看计算过程吧:

===> fact(5)

===> 5 * fact(4)

===> 5 * (4 * fact(3))

===> 5 * (4 * (3 * fact(2)))

===> 5 * (4 * (3 * (2 * fact(1))))

===> 5 * (4 * (3 * (2 * 1)))

===> 5 * (4 * (3 * 2))

===> 5 * (4 * 6)

===> 5 * 24

===> 120
  • 斐波那契数列
def fib(n):
    if n <2:
         return n
    else:
        return fib(n -1) + fib(n -2)
  • 汉诺塔
def hanoti(n,x1,x2,x3):
    if(n == 1):
        print('move:',x1,'-->',x3)
        return
    hanoti(n-1,x1,x3,x2)
    print('move:',x1,'-->',x3)
    hanoti(n-1,x2,x1,x3)
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容

  • 近期也没做什么大事儿。 每天改改作业,听听课,跑跑操。 今天上午梁老师拿着我的PPT讲了公开课,效果不错的。我们这...
    叫我黛西阅读 142评论 0 0
  • 今天上午八点到十点是我们第二次去旺中旺超市推销的时间段,一进去就发现和上次的氛围特别不一样。上次人流量很大,大爷大...
    唐三藏取你阅读 246评论 0 0
  • 面对每天的数据,有了进步的方向和方法! 进步,不是说单纯的比昨天更进步,而是有多少进步,进步的涨幅是多少?谢谢我们...
    哈哈思维时间阅读 145评论 0 2
  • 健康课《好吃的蔬菜》,时间的控制
    珍惜至自己阅读 372评论 0 0
  • 在我上课的地方,抬头望向窗外,刚好能看到高铁滑过。我常常会想着它会飞往哪儿去,我想着有一天也能站在那里...
    苏云儿阅读 238评论 0 2