Bag of Freebies for Training Object Detection Neural Networks

重点提炼:

  1. 多目标检测需要保持空间变换信息(相反,分类任务需要对空间变化不敏感),因此不能直接用原始的(用于分类任务)mixup。本文提出了 visual coherent mixup

We first explore the mixup technique on object detection. Unlikewe recognize the special property of multiple object detection task which favors spatial preserving transforms,and thus proposed a visually coherent image mixup methods for object detection tasks

  1. one-stage object detection 框架缺乏图像的空间变化,因此空域数据扩增对于one-stage的算法十分重要。

For example, due to the lack of spatial variation in single stage pipelines, spatialdata augmentation is crucial to the performance as proven in Single-Shot MultiBox Object Detector (SSD)

  1. 基于采样的two-stage算法在feature map上生成了众多的proposal,这替代了图中的随机裁剪。因此two-stage算法不需要在training阶段进行大量的几何形状的数据扩增。

Since sampling-based approaches repeat enormous crop like operations on feature maps, it substitutes the operation
of randomly cropping the input image, therefore these networks do not require extensive geometric augmentations applied during the training stage.

  1. one-stage和two-stage对于data preprocessing的需求差异较大,作者比较了YOLO v3以及faster RCNN的各种效果,见下图


    image.png
  1. Warm-up对于一些目标检测算法是非常重要的,比如YOLO v3。这类算法在迭代开始的时候,负样本会产生较大的梯度。

Warm up learning rate is another common strategy to avoid gradient explosion during the initial training iterations. Warm-up learning rate schedule is critical to several object detection algorithms, e.g., YOLO v3, which has a dominant gradient from negative examples in the very beginning iterations where sigmoid classification score is initialized around 0.5 and biased towards 0 for the majority predictions

  1. 证明了在YOLO v3上,配上合适的warm-up后,cosine schedule好于 step schedule
    image.png
  1. mixup 目标检测方面可以从两个角度使用: 1. 用于backbone的预训练,2. 用于目标检测器的训练。作者做了实验,无论用于哪个阶段,都对最终的结果有所帮助。而且,如果两个阶段都是用mixup,则可以取得1+1>2的效果。

While the results proved the consistent improvements by adopting mixup to either training phases, it is also notable that applying mixup in both phases can produce more significant gains as 1 + 1 > 2.

image.png

9.本文的bag of freebies对于one-stage框架具有更大的提升,通过在COCO2017上面的实验可以看出:


image.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,417评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,921评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,850评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,945评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,069评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,188评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,239评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,994评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,409评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,735评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,898评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,578评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,205评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,916评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,156评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,722评论 2 363
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,781评论 2 351

推荐阅读更多精彩内容