从SRCNN到EDSR,总结深度学习端到端超分辨率方法发展历程(三)

姓名:杨安东;学号:21021210846;学院:电子工程学院

转载自:https://blog.csdn.net/aBlueMouse/article/details/78710553

【嵌牛导读】超分辨率技术(Super-Resolution, SR)是指从观测到的低分辨率图像重建出相应的高分辨率图像,在监控设备、卫星图像和医学影像等领域都有重要的应用价值。

继上篇,从VDSR之后开始继续叙述。

【嵌牛鼻子】SRCNN,高分辨重构技术,深度学习

【嵌牛提问】什么是亚像素卷积层?

【嵌牛正文】

5. DRCN

(Deeply-Recursive Convolutional Network for Image Super-Resolution, CVPR2016)

DRCN与上面的VDSR都是来自首尔国立大学计算机视觉实验室的工作,两篇论文都发表在CVPR2016上,两种方法的结果非常接近。DRCN第一次将之前已有的递归神经网络(Recursive Neural Network)结构应用在超分辨率处理中。同时,利用残差学习的思想(文中的跳跃连接(Skip-Connection)),加深了网络结构(16个递归),增加了网络感受野,提升了性能。DRCN网络结构如下图所示。

DRCN输入的是插值后的图像,分为三个模块,第一个是Embedding network,相当于特征提取,第二个是Inference network, 相当于特征的非线性映射,第三个是Reconstruction network,即从特征图像恢复最后的重建结果。其中的Inference network是一个递归网络,即数据循环地通过该层多次。将这个循环进行展开,等效于使用同一组参数的多个串联的卷积层,如下图所示。


其中的 H1 到  HD 是D个共享参数的卷积层。将这D个卷积层的每一层的结果都通过相同的Reconstruction Net,在Reconstruction Net中与输入的图像相加,得到D个输出重建结果。这些所有的结果在训练时都同时被监督,即所有的递归都被监督,作者称之为递归监督(Recursive-Supervision),避免了梯度消失/爆炸问题。将D个递归得到的结果再加权平均:

,得到一个总输出。每个加权wd在训练的过程中也不断地更新。最终的目标函数就需要优化每一个递归层输出的误差和总输出的误差:



β表示的是权值衰减(weight decay)。α的初始值设置得比较高以使得训练过程稳定,因为训练开始的阶段递归更容易收敛。随着训练的进行,α逐渐衰减来提升最终输出的性能。

code: https://cv.snu.ac.kr/research/DRCN/

githug(tensorflow): https://github.com/jiny2001/deeply-recursive-cnn-tfhttps://

6. RED

(Image Restoration Using Convolutional Auto-encoders with Symmetric Skip Connections, NIPS2016)

这篇文章提出了由对称的卷积层-反卷积层构成的网络结构,作为一个编码-解码框架,可以学习由低质图像到原始图像端到端的映射。网络结构如下图所示。


RED网络的结构是对称的,每个卷积层都有对应的反卷积层。卷积层用来获取图像的抽象内容,反卷积层用来放大特征尺寸并且恢复图像细节。卷积层将输入图像尺寸减小后,再通过反卷积层上采样变大,使得输入输出的尺寸一样。每一组镜像对应的卷积层和反卷积层有着跳线连接结构,将两部分具有同样尺寸的特征(要输入卷积层的特征和对应的反卷积层输出的特征)做相加操作(ResNet那样的操作)后再输入到下一个反卷积层。这样的结构能够让反向传播信号能够直接传递到底层,解决了梯度消失问题,同时能将卷积层的细节传递给反卷积层,能够恢复出更干净的图片。可以看到,网络中有一条线是将输入的图像连接到后面与最后的一层反卷积层的输出相加,也就是VDSR中用到的方式,因此RED中间的卷积层和反卷积层学习的特征是目标图像和低质图像之间的残差。RED的网络深度为30层,损失函数用的均方误差。

————————————————

版权声明:本文为CSDN博主「aBlueMouse」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

原文链接:https://blog.csdn.net/aBlueMouse/article/details/78710553

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,444评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,421评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,363评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,460评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,502评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,511评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,280评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,736评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,014评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,190评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,848评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,531评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,159评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,411评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,067评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,078评论 2 352

推荐阅读更多精彩内容