AAC音频编码 相关的原理和设置

AAC(Advanced Audio Coding),中文名:高级音频编码,出现于1997年,基于MPEG-2的音频编码技术。由Fraunhofer IIS、杜比实验室AT&TSony等公司共同开发,目的是取代MP3格式。2000年,MPEG-4标准出现后,AAC重新集成了其特性,加入了SBR技术和PS技术,为了区别于传统的MPEG-2 AAC又称为MPEG-4 AAC。

iOS平台支持AAC编码器,主要使用AudioToolbox中的AudioConverter API。之所以做AAC编码器是因为在做一个HLS的功能,HLS要求的TS文件,需要视频采用H264编码,音频采用AAC编码。H264可以使用硬件或软件编码器,前面已经介绍。AAC也可以使用硬件或者软件编码,iOS全都支持。

首先需要创建一个Converter,也就是一个AAC Encoder,使用如下接口:

extern OSStatus

AudioConverterNew(      const AudioStreamBasicDescription*  inSourceFormat,

const AudioStreamBasicDescription*  inDestinationFormat,

AudioConverterRef*                  outAudioConverter)      __OSX_AVAILABLE_STARTING(__MAC_10_1,__IPHONE_2_0);

输入参数分别是源和目的的数据格式。

在AAC编码的场景下,源格式就是采集到的PCM数据,目的格式就是AAC。

AudioStreamBasicDescription inAudioStreamBasicDescription;

//    FillOutASBDForLPCM()

inAudioStreamBasicDescription.mFormatID = kAudioFormatLinearPCM;

inAudioStreamBasicDescription.mSampleRate = 44100;

inAudioStreamBasicDescription.mBitsPerChannel = 16;

inAudioStreamBasicDescription.mFramesPerPacket = 1;

inAudioStreamBasicDescription.mBytesPerFrame = 2;

inAudioStreamBasicDescription.mBytesPerPacket = inAudioStreamBasicDescription.mBytesPerFrame * inAudioStreamBasicDescription.mFramesPerPacket;

inAudioStreamBasicDescription.mChannelsPerFrame = 1;

inAudioStreamBasicDescription.mFormatFlags = kLinearPCMFormatFlagIsPacked | kLinearPCMFormatFlagIsSignedInteger | kLinearPCMFormatFlagIsNonInterleaved;

inAudioStreamBasicDescription.mReserved = 0;

AudioStreamBasicDescription outAudioStreamBasicDescription = {0}; // Always initialize the fields of a new audio stream basic description structure to zero, as shown here: ...

outAudioStreamBasicDescription.mChannelsPerFrame = 1;

outAudioStreamBasicDescription.mFormatID = kAudioFormatMPEG4AAC;

UInt32 size = sizeof(outAudioStreamBasicDescription);

AudioFormatGetProperty(kAudioFormatProperty_FormatInfo, 0, NULL, &size, &outAudioStreamBasicDescription);

OSStatus status = AudioConverterNew(&inAudioStreamBasicDescription, &outAudioStreamBasicDescription, &_audioConverter);

if(status != 0) {NSLog(@"setup converter failed: %d", (int)status);}

这样就创建了AAC编码器,默认情况下,Apple会创建一个硬件编码器,如果硬件不可用,会创建软件编码器。

经过我的测试,硬件AAC编码器的编码时延很高,需要buffer大约2秒的数据才会开始编码。而软件编码器的编码时延就是正常的,只要喂给1024个样点,就会开始编码。

那么如何在创建的时候指定使用软件编码器呢?需要用到下面的接口:

- (AudioClassDescription *)getAudioClassDescriptionWithType:(UInt32)type

fromManufacturer:(UInt32)manufacturer

{

static AudioClassDescription desc;

UInt32 encoderSpecifier = type;

OSStatus st;

UInt32 size;

st = AudioFormatGetPropertyInfo(kAudioFormatProperty_Encoders,

sizeof(encoderSpecifier),

&encoderSpecifier,

&size);

if (st) {

NSLog(@"error getting audio format propery info: %d", (int)(st));

return nil;

}

unsigned int count = size / sizeof(AudioClassDescription);

AudioClassDescription descriptions[count];

st = AudioFormatGetProperty(kAudioFormatProperty_Encoders,

sizeof(encoderSpecifier),

&encoderSpecifier,

&size,

descriptions);

if (st) {

NSLog(@"error getting audio format propery: %d", (int)(st));

return nil;

}

for (unsigned int i = 0; i < count; i++) {

if ((type == descriptions[i].mSubType) &&

(manufacturer == descriptions[i].mManufacturer)) {

memcpy(&desc, &(descriptions[i]), sizeof(desc));

return &desc;

}

}

return nil;

}

AudioClassDescription *desc = [self getAudioClassDescriptionWithType:kAudioFormatMPEG4AAC

fromManufacturer:kAppleSoftwareAudioCodecManufacturer];

OSStatus status = AudioConverterNewSpecific(&inAudioStreamBasicDescription, &outAudioStreamBasicDescription, 1, desc, &_audioConverter);

如果要正确的编码,编码码率参数是必须设置的。否则编码时会返回560226676错误码(!dat)。

UInt32 ulBitRate = 64000;

UInt32 ulSize = sizeof(ulBitRate);

status = AudioConverterSetProperty(_audioConverter, kAudioConverterEncodeBitRate, ulSize, &ulBitRate);

需要注意,AAC并不是随便的码率都可以支持。比如如果PCM采样率是44100KHz,那么码率可以设置64000bps,如果是16K,可以设置为32000bps。

创建完成Converter和设置完Bitrate之后,可以查询一下最大编码输出的大小,后续会用到。

UInt32 value = 0;

size = sizeof(value);

AudioConverterGetProperty(_audioConverter, kAudioConverterPropertyMaximumOutputPacketSize, &size, &value);

获取出来的Value表示编码器最大输出的包大小。

然后调用AudioConverterFillCOmplexBuffer进行编码:

AudioBufferList outAudioBufferList = {0};

outAudioBufferList.mNumberBuffers = 1;

outAudioBufferList.mBuffers[0].mNumberChannels = 1;

outAudioBufferList.mBuffers[0].mDataByteSize = value;//value是上面查询到的值

outAudioBufferList.mBuffers[0].mData = new int8[value];

UInt32 ioOutputDataPacketSize = 1;

status = AudioConverterFillComplexBuffer(_audioConverter, inInputDataProc, (__bridge void *)(self), &ioOutputDataPacketSize, &outAudioBufferList, NULL);

编码接口中,inInputDataProc是一个输入数据的回调函数。用来喂PCM数据给Converter,ioOutputDataPacketSize为1表示编码产生1帧数据即返回。outAudioBufferList用来存放编码后的数据。

inInputDataProc中的处理如下:

static OSStatus inInputDataProc(AudioConverterRef inAudioConverter, UInt32 *ioNumberDataPackets, AudioBufferList *ioData, AudioStreamPacketDescription **outDataPacketDescription, void *inUserData)

{

AACEncoder *encoder = (__bridge AACEncoder *)(inUserData);

UInt32 requestedPackets = *ioNumberDataPackets;

uint8_t *buffer;

uint32_t bufferLength = requestedPackets * 2;

uint32_t bufferRead;

bufferRead = [encoder.pcmPool readBuffer:&buffer withLength:bufferLength];

if (bufferRead == 0) {

*ioNumberDataPackets = 0;

return -1;

}

ioData->mBuffers[0].mData = buffer;

ioData->mBuffers[0].mDataByteSize = bufferRead;

ioData->mNumberBuffers = 1;

ioData->mBuffers[0].mNumberChannels = 1;

*ioNumberDataPackets = bufferRead >> 1;

return noErr;

}

pcmPool是一个用于存放PCM数据的环形缓冲区。

因为采集输入每次不一定有1024样点,所以可以将数据缓存起来,再满足1024样点时再调用编码。

另外,对于TS文件来说,每个AAC数据需要增加一个adts头,adts头是一个7bit的数据,通过adts可以得知AAC数据的编码参数,方便解码器进行解码。

adts头的计算方法如下:

- (NSData*) adtsDataForPacketLength:(NSUInteger)packetLength {

int adtsLength = 7;

char *packet = (char *)malloc(sizeof(char) * adtsLength);

// Variables Recycled by addADTStoPacket

int profile = 2;  //AAC LC

//39=MediaCodecInfo.CodecProfileLevel.AACObjectELD;

int freqIdx = 8;  //16KHz

int chanCfg = 1;  //MPEG-4 Audio Channel Configuration. 1 Channel front-center

NSUInteger fullLength = adtsLength + packetLength;

// fill in ADTS data

packet[0] = (char)0xFF; // 11111111  = syncword

packet[1] = (char)0xF9; // 1111 1 00 1  = syncword MPEG-2 Layer CRC

packet[2] = (char)(((profile-1)<<6) + (freqIdx<<2) +(chanCfg>>2));

packet[3] = (char)(((chanCfg&3)<<6) + (fullLength>>11));

packet[4] = (char)((fullLength&0x7FF) >> 3);

packet[5] = (char)(((fullLength&7)<<5) + 0x1F);

packet[6] = (char)0xFC;

NSData *data = [NSData dataWithBytesNoCopy:packet length:adtsLength freeWhenDone:YES];

return data;

}

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,884评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,755评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,369评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,799评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,910评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,096评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,159评论 3 411
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,917评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,360评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,673评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,814评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,509评论 4 334
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,156评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,882评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,123评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,641评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,728评论 2 351

推荐阅读更多精彩内容