Lecture 1:The Learning Problem

What is machine learning ?

learning:acquiring skill with accumulated experience for observations
machine learning: acquiring skill with accumulated/computed from data

而skill便是提升某些性能指标。一个典型应用就是ML通过股票数据分析预测如何更好的赚钱。
那什么时候用到机器学习呢?

  1. exists some ‘underlying pattern’ to be learned
     - so 'performance' measure can be improved;
  2. but no (easy) programmable definition
     - so 'ML' is needed
  3. there is data from the pattern
     - so ML has some 'inputs' learn from

Components of Learning

以下是基本的记号:

  • input: x\in X
  • output: y \in Y
  • unknown pattern to be learned \Leftrightarrow target function:
       f: X \rightarrow Y
  • data: training examples : D = {(x_1,y_1),(x_2,y_2),\dots,(x_N,y_N)}
  • hypothesis \Leftrightarrow skill hopefully good performance:
      g = X \rightarrow Y ('learned' formula to be used)

而machine learning要做的事情就是:use data to compute hypothesis g that approximates target function f


Machine Learning and Other Fields

Machine Learning and Data Mining

Machine learning use data to compute hypothesis g that approximates target function f
Data Mining use huge data to find property that is interesting

但是,其实在现实当中区别机器学习和数据挖掘并不是一件简单的事情,毕竟二者之间相辅相成,在传统意义上,数据挖掘也是致力于在大数据集上实现高效的计算。

Machine Learning and Artificial Intelligence

Machine learning use data to compute hypothesis g that approximates target function f
Artificial Intelligence compute something that shows intelligence behavior
也就是说,机器学习是人工智能实现的一种途径。

Machine Learning and Statistics

Machine learning use data to compute hypothesis g that approximates target function f
Statistics use data to inference about an unknown process
传统的统计学习的关注点在于证明数学假设,对于计算方面涉猎不足,然而统计学习为ML提供了很多很好的工具。

©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

友情链接更多精彩内容