bagging的算法及案例


转载声明

原文作者:Datawhale学习社区

原文链接:Datawhale学习社区

参考资料:
https://www.cnblogs.com/earendil/p/8872001.html
https://www.zhihu.com/question/26760839/answer/40337791

著作权归作者所有,任何形式的转载都请联系作者。


bagging的算法

  1. 从原始样本集中有放回的抽取训练集。每轮从原始样本集中使用Bootstraping的方法抽取n个训练样本,共进行k轮抽取,得到k个训练集。(k个训练集之间是相互独立的)

  2. 通过k个样本训练得到k个模型

  3. 对分类问题:将上步得到的k个模型采用投票的方式得到分类结果;
    对回归问题,计算上述模型的均值作为最后的结果。

bagging的案例分析(基于sklearn,介绍随机森林的相关理论以及实例)

  1. Sklearn为我们提供了 BaggingRegressorBaggingClassifier 两种Bagging方法的API,我们在这里通过一个完整的例子演示Bagging在分类问题上的具体应用。这里两种方法的默认基模型是树模型

  2. Bagging的一个典型应用是随机森林。顾名思义,“森林”是由许多“树”bagging组成的。在具体实现上,用于每个决策树训练的样本和构建决策树的特征都是通过随机采样得到的,随机森林的预测结果是多个决策树输出的组合(投票)。随机森林的示意图如下:


    RandomForest.png
  1. 使用sklearn来实现基于决策树方法的bagging策略。

    1. 创建一个含有1000个样本20维特征的随机分类数据集:
    # test classification dataset
    from sklearn.datasets import make_classification
    # define dataset
    X, y = make_classification(n_samples=1000, n_features=20, n_informative=15, 
                               n_redundant=5, random_state=5)
    # summarize the dataset
    print(X.shape, y.shape)
    
    1. 我们将使用重复的分层k-fold交叉验证来评估该模型,一共重复3次,每次有10个fold。我们将评估该模型在所有重复交叉验证中性能的平均值和标准差。
    # evaluate bagging algorithm for classification
    from numpy import mean
    from numpy import std
    from sklearn.datasets import make_classification
    from sklearn.model_selection import cross_val_score
    from sklearn.model_selection import RepeatedStratifiedKFold
    from sklearn.ensemble import BaggingClassifier
    # define dataset
    X, y = make_classification(n_samples=1000, n_features=20, n_informative=15,n_redundant=5, random_state=5)
    # define the model
    model = BaggingClassifier()
    # evaluate the model
    cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
    n_scores = cross_val_score(model, X, y, scoring='accuracy', cv=cv, n_jobs=-1,error_score='raise')
    # report performance
    print('Accuracy: %.3f (%.3f)' % (mean(n_scores), std(n_scores)))
    
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,427评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,551评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,747评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,939评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,955评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,737评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,448评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,352评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,834评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,992评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,133评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,815评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,477评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,022评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,147评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,398评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,077评论 2 355

推荐阅读更多精彩内容