Django学习笔记

1.Django Aggregation聚合

#平均值

from django.db.models import Avg

Book.objects.all().aggregate(Avg('price'))

#最大值

from django.db.models import Max

Book.objects.all().aggregate(Max('price'))

# 为每个publisher添加个num_books属性,即每个pulisher出版的book的数量.

from django.db.models import Count

pubs=Publisher.objects.annotate(num_books=Count('book'))


Django有两种方法来生成聚合

第一种方法是为整个QuerySet生成聚合值:

    函数aggregate()的参数是一系列聚合函数aggregate functions:

第二种是为查询集的每个对象生成聚合值

    每个对象的总结可以用方法annotate()生成

django 中 annotate和aggregate的区别:

aggregate 计算整个queryset的值,相当于count(). Annotate 对于 queryset 中的每个值在指定的属性上进行汇总,相当于group_by.


values():注解annotate是添加到每一个对象上的,一个执行了注解操作的查询集 QuerySet 所返回的结果中,每个对象都添加了一个注解值。但是,如果使用了values()从句,它就会限制结果中列的范围,对注解赋值的方法就会完全不同。就不是在原始的 QuerySet 返回结果中对每个对象中添加注解,而是根据定义在 values() 从句中的字段组合对先结果进行唯一的分组,再根据每个分组算出注解值,这个注解值是根据分组中所有的成员计算而得的


values_list 获取元组形式结果

2.1 比如我们要获取作者的 name 和 qq

        authors = Author.objects.values_list('name', 'qq')

        如果只需要 1 个字段,可以指定flat=True

        Author.objects.values_list('name',flat=True)

3. values 获取字典形式的结果

3.1 比如我们要获取作者的 name 和 qq

    Author.objects.values('name', 'qq')

注意:

1. values_list 和 values 返回的并不是真正的 列表 或 字典,也是 queryset,他们也是 lazy evaluation 的(惰性评估,通俗地说,就是用的时候才真正的去数据库查)

2. 如果查询后没有使用,在数据库更新后再使用,你发现得到在是新内容!!!如果想要旧内容保持着,数据库更新后不要变,可以 list 一下

3. 如果只是遍历这些结果,没有必要 list 它们转成列表(浪费内存,数据量大的时候要更谨慎!!!)


4. extra 实现 别名,条件,排序等

extra 中可实现别名,条件,排序等,后面两个用 filter, exclude 一般都能实现,排序用 order_by 也能实现。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,236评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,867评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,715评论 0 340
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,899评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,895评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,733评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,085评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,722评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,025评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,696评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,816评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,447评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,057评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,009评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,254评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,204评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,561评论 2 343

推荐阅读更多精彩内容