一.PriorityQueue优先级队列
在讲Handler之前,先讲一下优先级队列,在Java中具体呈现的类是PriorityQueue,其实现了Queue接口,延展一下Java的集合
Queue以及Deque都是继承于Collection,Deque是Queue的子接口。Deque是double ended queue,我将其理解成双端结束的队列,双端队列,可以在首尾插入或删除元素。而Queue的解释中,Queue就是简单的FIFO队列。所以在概念上来说,Queue是FIFO的单端队列,Deque是双端队列。
PriorityQueue类,Java给出的解释如下:
它是基于优先级堆的无边界(这里讲的无边界的含义是指可自动扩容集合长度)优先级队列,优先级队列中众多元素的排列,要么基于它天然的排序性(即实现Comparable接口的类,若插入的类未实现该接口会报类型转换错误),要么就是基于在构造函数传入的Comparator比较器
offer进栈源码如下:
transient Object[] queue;
public boolean offer(E e) {
if (e == null)
throw new NullPointerException();
modCount++;
int i = size;
if (i >= queue.length)
grow(i + 1);
size = i + 1;
if (i == 0)
queue[0] = e;
else
siftUp(i, e);
return true;
}
private void siftUp(int k, E x) {
if (comparator != null)
siftUpUsingComparator(k, x);
else
siftUpComparable(k, x);
}
private void siftUpComparable(int k, E x) {
Comparable<? super E> key = (Comparable<? super E>) x;
while (k > 0) {
int parent = (k - 1) >>> 1;
Object e = queue[parent];
if (key.compareTo((E) e) >= 0)
break;
queue[k] = e;
k = parent;
}
queue[k] = key;
}
private void siftUpUsingComparator(int k, E x) {
while (k > 0) {
int parent = (k - 1) >>> 1;
Object e = queue[parent];
if (comparator.compare(x, (E) e) >= 0)
break;
queue[k] = e;
k = parent;
}
queue[k] = x;
}
大概如下:优先级队列内部用数组实现,在插入元素时,会先扩容数组大小加1,然后通过排序方法将该元素插入指定位置中
poll出栈源码如下:
public E poll() {
if (size == 0)
return null;
int s = --size;
modCount++;
E result = (E) queue[0];
E x = (E) queue[s];
queue[s] = null;
if (s != 0)
siftDown(0, x);
return result;
}
出栈既是将数组第一个元素删除,但这里不会讲数组大小减1,而且将数组最后一个位置置为null,并将数组1-size-1的所有元素前置1位。
以上就是优先级队列的概念
二.Handler机制
- Handler:用来发送消息:sendMessage等多个方法,并实现handleMessage()方法处理回调(还可以使用Message或Handler的Callback进行回调处理)。
- Message:消息实体,发送的消息即为Message类型。
- MessageQueue:消息队列,用于存储消息。发送消息时,消息入队列,然后Looper会从这个MessageQueen取出消息进行处理。
- Looper:与线程绑定,不仅仅局限于主线程,绑定的线程用来处理消息。loop()方法是一个死循环,一直从MessageQueen里取出消息进行处理。
Handler机制本身就是基于生产者与消费者模型,发送消息的线程是生产者,处理消息的线程是消费者(即send/post是生产线程,handleMessage的是消费线程)。其工作流程如下:
Handler有各类的send方法,和post方法,其最终都会执行MessageQueue类中enqueueMessage()方法,在入栈这些消息执行,消息本身会有处理时间即when属性,比如sendMessage(msg)方法的Message的when是系统当前时间,sendMessageDelayed方法的when是系统当前时间加上延迟时间;随后将Message入栈到MessageQueue,就是基于优先级队列的概念,会按照Message的when属性进行排序,最近的Message在前面,最晚的Message在后面。
Handler类中post一个线程其实就是send一个Message,callback属性就是该线程
private static Message getPostMessage(Runnable r) {
Message m = Message.obtain();
m.callback = r;
return m;
}
MessageQueue类中enqueueMessage方法源码如下:
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) {
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
这边Handler将Message置于MessageQueue中,那边Looper的loop方法正在不停从MessageQueue中消费Message,Loop类中loop方法源码如下:
Loop类:
public static void loop() {
final MessageQueue queue = me.mQueue;
for (;;) {
.................
Message msg = queue.next();
.................
try {
msg.target.dispatchMessage(msg);
dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
} finally {
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}
}
.................
}
}
MessageQueue类:
Message next() {
// Return here if the message loop has already quit and been disposed.
// This can happen if the application tries to restart a looper after quit
// which is not supported.
final long ptr = mPtr;
if (ptr == 0) {
return null;
}
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
}
// Process the quit message now that all pending messages have been handled.
if (mQuitting) {
dispose();
return null;
}
// If first time idle, then get the number of idlers to run.
// Idle handles only run if the queue is empty or if the first message
// in the queue (possibly a barrier) is due to be handled in the future.
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when)) {
pendingIdleHandlerCount = mIdleHandlers.size();
}
if (pendingIdleHandlerCount <= 0) {
// No idle handlers to run. Loop and wait some more.
mBlocked = true;
continue;
}
if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
}
// Run the idle handlers.
// We only ever reach this code block during the first iteration.
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler
boolean keep = false;
try {
keep = idler.queueIdle();
} catch (Throwable t) {
Log.wtf(TAG, "IdleHandler threw exception", t);
}
if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler);
}
}
}
// Reset the idle handler count to 0 so we do not run them again.
pendingIdleHandlerCount = 0;
// While calling an idle handler, a new message could have been delivered
// so go back and look again for a pending message without waiting.
nextPollTimeoutMillis = 0;
}
}
以上源码可知,loop会不断的问MessageQueue中是否有可处理的Message,判断可处理的依据是系统当前时间是否大于等于Message的when属性,如果符合现将此message在MessageQueue队列中移除,之后return回去。如果不符合则阻塞线程,调用nativePollOnce方法,阻塞时间为nextPollTimeoutMillis;当loop有处理的message时,就会交给Handler进行dispatch分发消息
Hander中Looper相关
Looper的获取是通过ThreadLocal的get操作,其set操作是在Looper的prepare方法中,会实例化一个Looper,并将此对象存储在ThreadLocal中(由此可以看出looper的prepare方法只做looper对象的线程存储操作)
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
public static @Nullable Looper myLooper() {
return sThreadLocal.get();
}
一个线程可以有N个Handler,但是只有一个Looper,如何保证Looper的唯一性,就是通过ThreadLocal,其使用使用很简单,如下
static final ThreadLocal<T> sThreadLocal = new ThreadLocal<T>();
sThreadLocal.set()
sThreadLocal.get()
其中set,get源码如下:
public void set(T value) {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null)
map.set(this, value);
else
createMap(t, value);
}
public T get() {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null) {
ThreadLocalMap.Entry e = map.getEntry(this);
if (e != null) {
@SuppressWarnings("unchecked")
T result = (T)e.value;
return result;
}
}
return setInitialValue();
}
由源码可知,ThreadLocal本身实现很简单,是由ThreadLocalMap这么一个键值对Map来实现当前线程内存储变量的能力。有set源码可知,Looper的实例对象会存储在ThreadLocalMap中,其键为ThreadLocal对象本身;而ThreadLocalMap的获取是通过getMap方法,getMap方法源码如下:
ThreadLocal类:
ThreadLocalMap getMap(Thread t) {
return t.threadLocals;
}
void createMap(Thread t, T firstValue) {
t.threadLocals = new ThreadLocalMap(this, firstValue);
}
Thread类:
public class Thread implements Runnable {
ThreadLocal.ThreadLocalMap threadLocals = null;
}
由ThreadLocalMap相关源码可知,ThreadLocalMap类的对象threadLocals是单个线程唯一的,looper的获取是基于threadLocal的,所以Looper是单个线程唯一的。
我们平时用的实例化的Handler都是基于主线程的,子线程如何实例化Handler呢?
要注意的几点如下:
- Looper.prepare (实例化Looper,并存储至ThreadLocal中)
- Looper.loop (启动for循环)
- Looper.quit (停止loop的for循环,释放线程、释放内存)
public class HandlerDemoThread extends Thread {
private Looper mLooper;
@Override
public void run() {
Looper.prepare();
synchronized (this) {
mLooper = Looper.myLooper();
}
Looper.loop();
}
public Looper getLooper() throws Exception {
if (!isAlive()) {
throw new Exception("current thread is not alive");
}
if (mLooper == null) {
throw new Exception("current thread is not start");
}
return mLooper;
}
}
class MainActivity : AppCompatActivity() {
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)
val handlerThread = HandlerDemoThread()
handlerThread.start()
val handler1 = object : Handler(handlerThread.getLooper()) {
override fun handleMessage(msg: Message?) {
super.handleMessage(msg)
}
}
handler1.sendMessage(Message.obtain())
}
override fun onDestroy() {
super.onDestroy()
handler1.looper.quit()
}
}
由上述Handler系统源码可知,handler在初始化前,要确保当前线程prepare过,即实例化Looper存储与ThreadLocal中。还要启动Looper的loop方法,让传输带运转起来。这里有一点需要注意,由于send##,pos##方法可能会执行在不同线程中,在send一个delay消息时,由于在enqueueMessage时,会加同步锁,这样会导致delay算出来的时间是不准确的;在这里大家还要注意到,平时实例化主线程的Handler的时候,是不需要调用当前主线程的prepare与loop方法,这是因为ActivityThread已经启动过主线程的Looper。
ActivityThread就是我们常说的主线程或UI线程,ActivityThread的main方法是整个APP的入口,
ActivityThread的main方法源码如下:
public static void main(String[] args) {
...
Looper.prepareMainLooper();
ActivityThread thread = new ActivityThread();
//在attach方法中会完成Application对象的初始化,然后调用Application的onCreate()方法
thread.attach(false);
if (sMainThreadHandler == null) {
sMainThreadHandler = thread.getHandler();
}
...
Looper.loop();
throw new RuntimeException("Main thread loop unexpectedly exited");
}
为何主线程不用调用quit方法,当然逻辑就是不行的,主线程关了,那app就关闭了。而且在quit方法中,即最终调用的是MessageQueue的quit方法,已经做了验证,源码如下:
void quit(boolean safe) {
if (!mQuitAllowed) {
throw new IllegalStateException("Main thread not allowed to quit.");
}
synchronized (this) {
if (mQuitting) {
return;
}
mQuitting = true;
if (safe) {
removeAllFutureMessagesLocked();
} else {
removeAllMessagesLocked();
}
// We can assume mPtr != 0 because mQuitting was previously false.
nativeWake(mPtr);
}
}
private void removeAllMessagesLocked() {
Message p = mMessages;
while (p != null) {
Message n = p.next;
p.recycleUnchecked();
p = n;
}
mMessages = null;
}
private void removeAllFutureMessagesLocked() {
final long now = SystemClock.uptimeMillis();
Message p = mMessages;
if (p != null) {
if (p.when > now) {
removeAllMessagesLocked();
} else {
Message n;
for (;;) {
n = p.next;
if (n == null) {
return;
}
if (n.when > now) {
break;
}
p = n;
}
p.next = null;
do {
p = n;
n = p.next;
p.recycleUnchecked();
} while (n != null);
}
}
}
Message类:
void recycleUnchecked() {
// Mark the message as in use while it remains in the recycled object pool.
// Clear out all other details.
flags = FLAG_IN_USE;
what = 0;
arg1 = 0;
arg2 = 0;
obj = null;
replyTo = null;
sendingUid = -1;
when = 0;
target = null;
callback = null;
data = null;
synchronized (sPoolSync) {
if (sPoolSize < MAX_POOL_SIZE) {
next = sPool;
sPool = this;
sPoolSize++;
}
}
}
MessageQueue的quit方法,源码可知是释放掉消息队列的所有Message,以及释放Message内部参数,即释放内存。同时将全局变量mQuitting置为true,通过nativeWake再唤醒线程,由于Looper中loop不停在调用MessageQueue类的next方法,其中next方法部分源码如下:
.................
for (;;) {
.................
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
.................
if (mQuitting) {
dispose();
return null;
}
.................
}
}
由于MessageQueue的quit已唤醒线程,所以next会一直往下走,遇到mQuitting为true,变回diapose,同时返回null,loop那边拿到null后,变回直接return loop方法。loop方法便会结束,整个线程便会得要释放。所以回到quit方法,所以quit既能释放内存,也释放了线程;
在子线程中,如果手动为其创建了Looper,那么在所有的事情完成以后应该调用quit方法来终止消息循环,否则这个子线程就会一直处于等待(阻塞)状态,而如果退出Looper以后,这个线程就会立刻(执行所有方法并)终止,因此建议不需要的时候终止Looper。即调用quit方法
这里要注意的一点是,recycleUnchecked方法中,有这么一段代码:
synchronized (sPoolSync) {
if (sPoolSize < MAX_POOL_SIZE) {
next = sPool;
sPool = this;
sPoolSize++;
}
这里的逻辑是:从队尾将该已被内部清空,外部去除关联的Message,添加至消息池里。消息池就是用户创建Message的内存池。那Handler中如何创建消息呢?为了防止频繁实例化Message,从而引发内存抖动,这里就用到内存共享,即内存复用的概念。即调用Message中obtain方法,来获取Message实例,obtain方法源码如下:
public static Message obtain() {
synchronized (sPoolSync) {
if (sPool != null) {
Message m = sPool;
sPool = m.next;
m.next = null;
m.flags = 0; // clear in-use flag
sPoolSize--;
return m;
}
}
return new Message();
}
思考:为什么Handler不会阻塞主线程?
从以上分析可知,Handler在处理消息时,对于未到处理时间的队头Message,便会休眠掉进栈的当前线程,直到休眠时间结束,才会去处理队头Message。既然会休眠线程,为什么Handler没有阻塞主线程呢?
对于线程即是一段可执行的代码,当可执行代码执行完成后,线程生命周期便该终止了,线程退出。而对于主线程,我们是绝不希望会被运行一段时间,自己就退出,那么如何保证能一直存活呢?简单做法就是可执行代码是能一直执行下去的,死循环便能保证不会被退出(eg:binder线程也是采用死循环的方法,通过循环方式不同与Binder驱动进行读写操作),当然并非简单地死循环,无消息时会休眠。但这里可能又引发了另一个问题,既然是死循环又如何去处理其他事务呢?通过创建新线程的方式。真正会卡死主线程的操作是在回调方法onCreate/onStart/onResume等操作时间过长,会导致掉帧,甚至发生ANR,looper.loop本身不会导致应用卡死。
这里便会再度引发一个:主线程的死循环一直运行是不是特别消耗CPU资源呢?
当然不会,MessageQueue没有消息时,便阻塞在loop的queue.next()中的nativePollOnce()方法里,此时主线程会释放CPU资源进入休眠状态,直到下个消息到达或者有事务发生,通过往pipe管道写端写入数据来唤醒主线程工作。这里采用的epoll机制,是一种IO多路复用机制,可以同时监控多个描述符,当某个描述符就绪(读或写就绪),则立刻通知相应程序进行读或写操作,本质同步I/O,即读写是阻塞的。 所以说,主线程大多数时候都是处于休眠状态,并不会消耗大量CPU资源。