编程马拉松 Day02 递归

今天是第二天,继续我们的征程。

题目

  1. 编写代码,把字符串中的每个空格替换为%20。例如,输入"hello world.",则输出"hello%20world."。
  2. 编写代码,给定系数n,求1+2+3+...+n的总和,即运算符
  3. 编写代码,观察如下数列,给定系数n,求数列中的第n个数字(tips: 斐波那契数列)。
    1 1 2 3 5 8 13 21 34 55 89 ...

字符替换

本题是将空格等特殊字符变为转义字符的函数,常用于URL编码中,用来避免URL中可能存在的字符歧义。

/**
 * 判断当前字符是否为普通字符
 */
public static boolean isPlainChar(char c) {
    return (c >= '0' && c <= '9') ||
            (c >= 'a' && c <= 'z') ||
            (c >= 'A' && c <= 'Z') ||
            c == '!' || c == '$' || c == '-' || c == '.' || c == '+' ||
            c == '*' || c == '\'' || c == '(' || c == ')' || c == ',';
}
public static char[] encodeMap(char c) {
    //构造特殊字符映射表
    String[] map = new String[256];
    map[' '] = "%20";
    map['/'] = "%2F";
    map['?'] = "%3F";
    map['%'] = "%25";
    map['#'] = "%23";
    map['&'] = "%26";
    map['='] = "%3D";
    return map[c].toCharArray();
}
public static char[] urlEncode(char source[]) {
    int needLength = 0;
    for (int i = 0; i < source.length; i++) {
        char c = source[i];
        if (isPlainChar(c)) {
            needLength++;
        } else {
            needLength += encodeMap(c).length;
        }
    }
    char result[] = new char[needLength];
    int resultIndex = 0;
    for (int i = 0; i < source.length; i++) {
        char c = source[i];
        if (isPlainChar(c)) {
            result[resultIndex] = c;
            resultIndex++;
        } else {
            char encodeStr[] = encodeMap(c);
            System.arraycopy(encodeStr, 0, result, resultIndex, encodeStr.length);
            resultIndex += encodeStr.length;
        }
    }

    return result;
}
//===========
//测试代码
public static void main(String args[]) {
    char[] source = "hello world.".toCharArray();
    System.out.println(urlEncode(source));
}

累加和

正向循环解题

要求n个数字的和,则需求出 f(1)+f(2)+...+f(n-1)+f(n)
本题中等差数列的公差为1,则f(1) == 1 ,f(2) == 2...

public static int sigmaAdd(int n){
    int sum = 0;
    for (int i = 1;i<=n;i++){
        sum+=i;
    }
    return sum;
}

逆向递归求解

通过观察数列,不难看出数列的如下性质:
f(n) = f(n-1) + 1
我们可以将∑n的问题转化为 f(n) + f(n-1) +...+ f(2) + f(1),则可以使用递归来求解

public static int sigmaAdd2(int n) {
    if (n > 1) {
        return n + sigmaAdd(--n);
    } else {
        return 1;
    }
}

递归在算法中的应用非常广泛,许多看似复杂的多重循环问题,都可以通过递归加中止条件写出较为简洁的代码

斐波那契数列

递归算法

先来看斐波那契数列的性质:

  1. 当n=0时,f(n) = 0
  2. 当0=1时,f(n) = 1
  3. 当n>1时,f(n) = f(n-2) + f(n-1)

根据其性质,很容易通过递归写出其代码:

public static int fibonacci(int n) {
    if (n <= 0) {
        return 0;
    } else if (n < 2) {
        return 1;
    } else {
        return fibonacci(n - 1) + fibonacci(n - 2);
    }
}
//===========
//测试代码
public static void main(String args[]){
    System.out.println(fibonacci(20));
}

递归的代码虽然简洁,但简洁不代表简单。以求得f(10)为例,需要先求得f(9)和f(8)。同样,想求得f(9),需要先求得f(8)和f(7)...我们可以用树形结构来表示这种依赖关系,如下图所示。


基于递归求斐波那契数列的第10项的调用过程

不难发现,树中有很多结点是重复的,而且重复的结点数会随着n的增大而急剧增加,这意味着计算量会随着n的增大而急剧增大。你可以试下用递归方式求斐波那契数列的第50项试试,感受一下这样的递归会有多慢。

非递归算法

递归方法之所以慢,是因为重复计算太多,只需想办法避免重复计算,即可加快其速度。比如我们可以把之前计算过的结果保存下来,便于下次计算。

比如先根据f(0)和f(1)得到f(2),再根据f(1)和f(2)得到f(3),每次结果均保留,依次类推即可得到第n项的值,其时间复杂度为O(n)。实现代码如下。

public static long fibonacci2(int n) {
    int fib[] = new int[]{0, 1};
    if (n < 2) return fib[n];
    long fib1 = 1;
    long fib2 = 0;
    long result = 0;
    for (int i = 2; i <= n; i++) {
        result = fib1 + fib2;
        fib2 = fib1;
        fib1 = result;
    }
    return result;
}

时间对比

基准 递归方式 非递归方式
fib(20)耗时 0ms 0ms
fib(30)耗时 4ms 0ms
fib(40)耗时 383ms 0ms
fib(50)耗时 44269ms 0ms

通过表格可以看到,在时间方面非递归方式有着显著的优势。除了时间的开销,递归过程中还会创建多个函数栈,每个函数栈都有自己的参数,返回值等信息,因此递归也会给栈的内存空间带来一定的压力。如StackOverflow调用栈溢出异常就是由于栈空间不足引起的。

从思路上来讲,递归采用的是自顶向下的方式,将一个个较大的问题分解为若干个较小的问题(如 f(10) = f(9) + f(8)),但小的问题可能会有多次重复计算。我们可以反其道而行之,采用自底向上的方式,先从小问题开始处理,记录小问题的结果,然后根据小问题的结果来解答较大的问题,以此类推,得到特定问题的解。

扩展

通过今天的练习,我们分析了递归的一些优缺点。在编写代码时,要了解递归潜在的问题,在一些注重性能的场合,尽量采用循环来代替递归,从而提高程序的运行效率。
此外在面试中,编程题通常不会太直白的表现出来,面试官往往会将问题包装一下,以此来考察我们的分析与建模能力,如下边几个问题。

  1. 上台阶问题,一共有n个台阶,每次可以上1阶或2阶,那么上到第n阶有几种方法。
  2. 小马过河问题,河中有n块石头,小马每次能跳过1块或2块石头,那么跳过n块石头有几种方法。
  3. 如下图所示,用左边的2*1的小矩形横着或者竖着去覆盖右边2*8的大矩形,在不发生重叠的情况下,总共有多少种方法?


    矩形覆盖问题

扩展题答案

前两个问题基本一致,我们先来分析问题。
假设有n个台阶,则第一步有两种方法

  • 若上1个台阶,则剩下n-1个台阶
  • 若上2个台阶,则剩下n-2个台阶

以此类推,不难得出 f(n) = f(n-1)+ f(n-2) 这个式子,是不是很熟悉呢?对的,前两个问题仍是斐波那契数列相关的应用题,有公式后不难得出其答案。

接下来看第三个问题。
我们先把2*8的覆盖方法记为f(8)。用第一个2*1的小矩形去覆盖大举证的最左边边时有两种选择:

  • 竖着放,则右边还剩2*7的区域,记为f(7)
  • 横着放,则左下方也只能横着放一个2*1的小举证,右边还剩下 2*6的区域,记为f(6)

因此f(8) = f(7) + f(6),此时可以看出,这仍然是斐波那契数列。

参考书目
《剑指offer》2.4.1

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,163评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,301评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,089评论 0 352
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,093评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,110评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,079评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,005评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,840评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,278评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,497评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,667评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,394评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,980评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,628评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,649评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,548评论 2 352

推荐阅读更多精彩内容

  • 本文出自 Eddy Wiki ,转载请注明出处:http://eddy.wiki/interview-code.h...
    eddy_wiki阅读 9,336评论 0 30
  • Scratch用循环的方法实现斐波那契数列编程心得 1 斐波那契数列 1.1 定义 首先引用秒懂百科里面关于“...
    余江林阅读 764评论 0 0
  • 第2章 基本语法 2.1 概述 基本句法和变量 语句 JavaScript程序的执行单位为行(line),也就是一...
    悟名先生阅读 4,145评论 0 13
  • 上一篇文章讲述了树的概念, 特征以及分类, 旨在让我们理解什么是树, 树的一些常用的概念是什么,树的分类有哪些等。...
    DevCW阅读 2,026评论 4 10
  • 这世上有一种钥匙,不管锁的千奇百怪,都可打开它;这世上有一种药方,不管病的千变万化,都可医治它,这世上有一种治乱,...
    觉智师兄阅读 121评论 0 1