AI疯狂进阶——感受野篇

本文作者专注于AI进阶算法,正在推出AI疯狂进阶之基础理论进阶篇,如有兴趣可持续关注我。

核心导读:

1. 神经网络感受野是什么?

2. 感受野的分布是啥样子的?

3. 感受野是不是越大越好?

4. 多路感受野融合提高精度?

5. 如何计算神经网络感受野?

1. 神经网络感受野是什么?

在卷积神经网络中,感受野是卷积神经网络每一层输出的特征图上的像素点在原始图像上映射的区域大小。神经元感受野之外的图像内容并不会对该神经元的值产生影响,所以必须确保这个神经元的感受野覆盖所有相关的图像区域。在应用工程中,通过调节网络的深度,卷积的kernel size等参数控制网络的感受野大小 。感受野的概念尤为重要,对于理解和诊断CNN网络有着极大的帮助。本文对感受野相关的问题进行了总结,下面一一阐述:

2.感受野的分布是啥样子的?

《Understanding the Effective Receptive Field in Deep Convolutional Neural Networks》论文中引出了theoretical receptive field (理论感受野)和Effective Receptive Fields(实际感受野)这2个概念。通常实际感受野小于理论感受野,随着具体的任务变化。作者进一步在数学上证明了 Effective Receptive Fields 在 1D 是一个高斯分布,随后推出 2D/大于2D的情况都是近似高斯分布,如下图所示。

3.感受野是不是越大越好?

我们需要关注网络的感受野是否足够,例如在需要检测或者识别图片中大目标的时候。但这并不意味着感受野越大越好,在某些场景中过大的感受野甚至会降低模型的性能,例如《The Receptive Field as a Regularizer in Deep Convolutional Neural Networks for Acoustic Scene Classification》论文通过1*1 Conv替换3*3Conv缩小ResNet和DenseNet等网络的感受野在ASC场景获取了比原始模型更高的精度;《Gated Recurrent Convolution Neural Network for OCR 》论文提出了GRCL 结构来限制无效感受野,提高了STR的识别精度,下图展示了改进后特征响应图,可以看出RCNN能强化文字上的响应,减弱无效背景的响应。

4.多路感受野融合提高精度?

Inception网络提出多路卷积融合的思路,实际是在同一个尺度上多种感受野信息的融合,主要是为了解决图像大小分布差异较大的问题。《MixNet: Mixed Depthwise Convolutional Kernels》Google Brain最近提出Mixed Depthwise Convolution,类似Inception的单元结构,以此来提高网络表达能力。Google Brain在MobilenetV2的基础上用MDConv替换3*3 Depthwise Conv进行了多组实验,在大多数情况下都取得了更好的效果,接着在Imagenet上用Auto ML搜索出MixNet-L,取得了78.9%的top-1分类精度,同时FLOPs小于600M,超过Resnet153。

5.感受野如何计算?

感受野的计算方式有两种,下面给出其中一个计算公式和计算示例

6.小结

感受野作为神经网络隐藏的重要特性还有很多需要发掘的地方,在实际的工程项目中我们需要考虑这一块的影响,细节往往决定成败,与其沉迷在研究高大上的算法架构,真不如沉下心把一些基础性的研究工作做透彻。

如需转载,请注明出处。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,558评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,002评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,024评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,144评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,255评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,295评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,068评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,478评论 1 305
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,789评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,965评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,649评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,267评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,982评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,800评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,847评论 2 351

推荐阅读更多精彩内容