架构设计之服务限流

今天先给大家送一波福利,需要的自取
全套高级java架构师资料链接:https://pan.baidu.com/s/1sJyGASM2U3iZXECdVhpOPw
密码:dw4u

限流可以认为服务降级的一种,限流就是限制系统的输入和输出流量已达到保护系统的目的。

一般来说系统的吞吐量是可以被测算的,为了保证系统的稳定运行。

一旦达到的需要限制的阈值,就需要限制流量并采取一些措施以完成限制流量的目的。

比如:延迟处理,拒绝处理,或者部分拒绝处理等等。

服务限流概念

在介绍限流概念之前,我们先来聊聊身边有哪些限流。

如果有在帝都的码农估计对限流是最深有感触的,帝都但凡开个XXX会议,各大地铁站都会限流。

每年的双11都是剁手族的天堂,11月11号0点0几秒的时候,下面这些场景或许你曾经遇到过。

当然,这几年双11各大电商对并发的支持做的越来越好,这里只是借鉴双11刚推出之际,常常需要应对的一些问题。

通过这两个场景,基本上服务限流的作用也就明白:

「服务限流」其实是指当系统资源不够,不足以应对大量请求。

即系统资源与访问量出现矛盾的时候,我们为了保证有限的资源能够正常服务,因此对系统按照预设的规则进行流量限制或功能限制的一种方法。

为何要服务限流

再举一个我们生活中的例子:一些热门的旅游景点,往往会对每日的旅游参观人数有严格的限制。

比如北京的故宫、欢乐谷等,每天只会卖出固定数目的门票,如果你去的晚了,可能当天的票就已经卖完了。

当天就无法进去游玩了,即使你进去了,排队也能排到你怀疑人生。

为什么旅游景点要做这样的限制呢?

多卖一些门票多赚一些钱岂不是更好?

其实对于旅游景点而言,她们也很无奈。

因为景点的服务资源有限嘛,每日能服务的人数是有限的。

一旦放开限制了,景点的工作人员就会不够用,卫生情况也得不到保障,安全也有隐患,超密集的人群也会严重的影响游客的体验。

但由于景区名气大,来游玩的旅客络绎不绝,远超出了景区的承载能力,因此景区只好做出限制每日人员流量的举措。

同理,在IT软件行业中,系统服务也是这样的。

如果你的系统理论是时间单位内可服务100W用户。

但是今天却突然来了300W用户,由于用户流量的随机性,如果不加以限流,很有可能这300W用户一下子就压垮了系统,导致所有人都得不到服务。

因此为了保证系统至少还能为100W用户提供正常服务,我们需要对系统进行限流设计。

有的人可能会想,既然会有300W用户来访问,那为啥系统不干脆设计成能足以支撑这么大量用户的集群呢?

这是个好问题。

如果系统是长期有300W的用户来访问,肯定是要做上述升级的。

但是常常面临的情况是,系统的日常访问量就是100W。

只不过偶尔有一些不可预知的特定原因导致的短时间的流量激增,这个时候,公司往往出于节约成本的考虑,不会为了一个不常见的尖峰来把我们的系统扩容到最大的尺寸。

如何服务限流

对系统服务进行限流,一般有如下几个模式:

1. 熔断:

这个模式是需要系统在设计之初,就要把熔断措施考虑进去。

当系统出现问题时,如果短时间内无法修复,系统要自动做出判断,开启熔断开关,拒绝流量访问,避免大流量对后端的过载请求。

系统也应该能够动态监测后端程序的修复情况,当程序已恢复稳定时,可以关闭熔断开关,恢复正常服务。

2. 服务降级:

将系统的所有功能服务进行一个分级。

当系统出现问题,需要紧急限流时,可将不是那么重要的功能进行降级处理,停止服务。

这样可以释放出更多的资源供给核心功能的去用。

例如在电商平台中,如果突发流量激增,可临时将商品评论、积分等非核心功能进行降级。

停止这些服务,释放出机器和CPU等资源来保障用户正常下单,而这些降级的功能服务可以等整个系统恢复正常后,再来启动,进行补单/补偿处理。

除了功能降级以外,还可以采用不直接操作数据库,而全部读缓存、写缓存的方式作为临时降级方案。

3. 延迟处理:

这个模式需要在系统的前端设置一个流量缓冲池。

将所有的请求全部缓冲进这个池子,不立即处理。

然后后端真正的业务处理程序从这个池子中取出请求依次处理,常见的可以用队列模式来实现。

这就相当于用异步的方式去减少了后端的处理压力,但是当流量较大时,后端的处理能力有限,缓冲池里的请求可能处理不及时,会有一定程度延迟。

4. 特权处理:

这个模式需要将用户进行分类。

通过预设的分类,让系统优先处理需要高保障的用户群体,其它用户群的请求就会延迟处理或者直接不处理。

那在实际项目中,对访问流量的限制,可采用如下几种技术方法:

♛ 熔断技术

熔断的技术可以重点参考Netflix的开源组件hystrix的做法,主要有三个模块:熔断请求判断算法、熔断恢复机制、熔断报警。

♛ 计数器方法

系统维护一个计数器,来一个请求就加1,请求处理完成就减1。

当计数器大于指定的阈值,就拒绝新的请求。

基于这个简单的方法,可以再延伸出一些高级功能。

比如阈值可以不是固定值,是动态调整的。

另外,还可以有多组计数器分别管理不同的服务,以保证互不影响等。

♛ 队列方法

就是基于FIFO队列,所有请求都进入队列,后端程序从队列中取出待处理的请求依次处理。

基于队列的方法,也可以延伸出更多的玩法来,比如可以设置多个队列以配置不同的优先级。

♛ 令牌桶方法

首先还是要基于一个队列,请求放到队列里面。

但除了队列以外,还要设置一个令牌桶,另外有一个脚本以持续恒定的速度往令牌桶里面放令牌。

后端处理程序每处理一个请求就必须从桶里拿出一个令牌,如果令牌拿完了,那就不能处理请求了。

我们可以控制脚本放令牌的速度来达到控制后端处理的速度,以实现动态流控。

注意事项

我们在做服务限流的时候,还是有一些原则和事项需要注意的:

  • 实时监控:系统必须要做好全链路的实时监控,才能保证限流的及时检测和处理。

  • 手动开关:除系统自动限流以外,还需要有能手动控制的开关,以保证随时都可以人工介入。

  • 限流的性能:限流的功能理论上是会在一定程度影响到业务正常性能的,因此需要做到限流的性能优化和控制。

总结

系统故障常常都是不可预测且难以避免的,因此作为系统设计师的我们,必须要提前预设各种措施,以应对随时可能的系统风险。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,530评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,403评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,120评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,770评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,758评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,649评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,021评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,675评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,931评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,751评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,410评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,004评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,969评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,042评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,493评论 2 343

推荐阅读更多精彩内容