numpy之转置(transpose)和轴对换

转置(transpose)和轴对换

转置可以对数组进行重置,返回的是源数据的视图(不会进行任何复制操作)。

转置有三种方式,transpose方法、T属性以及swapaxes方法。

1 .T,适用于一、二维数组

In [1]: import numpy as np

In [2]: arr = np.arange(20).reshape(4,5)#生成一个4行5列的数组

In [3]: arr
Out[3]:
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14],
       [15, 16, 17, 18, 19]])

In [4]: arr.T #求转置
Out[4]:
array([[ 0,  5, 10, 15],
       [ 1,  6, 11, 16],
       [ 2,  7, 12, 17],
       [ 3,  8, 13, 18],
       [ 4,  9, 14, 19]])

2. 高维数组

对于高维数组,transpose需要用到一个由轴编号组成的元组,才能进行转置。

这里,着实好好理解了一下。开始的时候怎么都想不明白。因为他跟矩阵转置理解起来不太一样。

主要参考:
AbstractSky的博客
Albert Chen
经管之家

对多维数组来说,确定最底层的一个基本元素位置需要用到的索引个数即是维度。这句话的理解可以结合我索引和切片的那篇文章理解。

我是这样的理解的,比如说三维的数组,那就对维度进行编号,也就是0,1,2。这样说可能比较抽象。这里的0,1,2可以理解为对shape返回元组的索引。
比如:

In [59]: arr1 = np.arange(12).reshape(2,2,3)

In [60]: arr1
Out[60]:
array([[[ 0,  1,  2],
        [ 3,  4,  5]],

       [[ 6,  7,  8],
        [ 9, 10, 11]]])

In [61]: arr1.shape #看形状
Out[61]: (2, 2, 3) #说明这是一个2*2*3的数组(矩阵),返回的是一个元组,可以对元组进行索引,也就是0,1,2
形状 索引
2 0
2 1
3 2

所以说,transpose参数的真正意义在于这个shape元组的索引。

那么它的转置就应该是


In [62]: arr1.transpose((1,0,2))
Out[62]:
array([[[ 0,  1,  2],
        [ 6,  7,  8]],

       [[ 3,  4,  5],
        [ 9, 10, 11]]])

比如,数值6开始的索引是[1,0,0],变换后变成了[0,1,0]
这也说明了,transpose依赖于shape

但是,对于为什么转置最后一个索引是不动的,颇为不解。数组或者说矩阵的这块有点太抽象了。虽然我线代成绩不错,但是这玩意不太一样啊。

3.swapaxes

虽然还有点不解的地方,但是,理解了上方那部分之后,swapaxes方法也就很好理解了。它接受一对轴编号。进行轴对换。其实也就是shape参数。

In [67]: arr2 = np.arange(16).reshape(2,2,4)           
                                                       
In [68]: arr2                                          
Out[68]:                                               
array([[[ 0,  1,  2,  3],                              
        [ 4,  5,  6,  7]],                             
                                                       
       [[ 8,  9, 10, 11],                              
        [12, 13, 14, 15]]])                            
                                                       
In [69]: arr2.shape                                    
Out[69]: (2, 2, 4)                                     
                                                       
In [70]: arr2.swapaxes(1,2)                            
Out[70]:                                               
array([[[ 0,  4],                                      
        [ 1,  5],                                      
        [ 2,  6],                                      
        [ 3,  7]],                                     
                                                       
       [[ 8, 12],                                      
        [ 9, 13],                                      
        [10, 14],                                      
        [11, 15]]])   

In [4]: arr2.swapaxes(1,0)#转置,对比transpose(1,0,2)
Out[4]:
array([[[ 0,  1,  2,  3],
        [ 8,  9, 10, 11]],

       [[ 4,  5,  6,  7],
        [12, 13, 14, 15]]])                                 
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,864评论 6 494
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,175评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,401评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,170评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,276评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,364评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,401评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,179评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,604评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,902评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,070评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,751评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,380评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,077评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,312评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,924评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,957评论 2 351

推荐阅读更多精彩内容