Spark Executor 内存管理

主要对 Executor 的内存管理进行分析,下文中的 Spark 内存均特指 Executor 的内存

堆内内存和堆外内存

作为一个 JVM 进程,Executor 的内存管理建立在 JVM 的内存管理之上,此外spark还引入了堆外内存(不在JVM中的内存),在spark中是指不属于该executor的内存。

  • 堆内内存:
    由 JVM 控制,由GC(垃圾回收)进行内存回收

  • 堆外内存:
    不受 JVM 控制,可以自由分配

堆外内存的优点: 减少了垃圾回收的工作。

堆外内存的缺点:

  • 堆外内存难以控制,如果内存泄漏,那么很难排查
  • 堆外内存相对来说,不适合存储很复杂的对象。一般简单的对象或者扁平化的比较适合。

堆内内存

堆内内存的大小,由 Spark 应用程序启动时的 executor-memory 或 spark.executor.memory 参数配置,这些配置在 spark-env.sh 配置文件中。

Executor 内运行的并发任务共享 JVM 堆内内存,这些内存被规划为 存储(Storage)内存执行(Execution)内存

  • Storage 内存:
    用于存储 RDD 的缓存数据 和 广播(Broadcast)数据,主要用于存储 spark 的 cache 数据,例如RDD的缓存

  • Execution 内存:
    执行 Shuffle 时占用的内存,主要用于存放 Shuffle、Join、Sort 等计算过程中的临时数据

  • 用户内存(User Memory):
    主要用于存储 RDD 转换操作所需要的数据,例如 RDD 依赖等信息

  • 预留内存(Reserved Memory):
    系统预留内存,会用来存储Spark内部对象。

剩余的部分不做特殊规划,那些 Spark 内部的对象实例,或者用户定义的 Spark 应用程序中的对象实例,均占用剩余的空间。

Spark 对堆内内存的管理是一种逻辑上的”规划式”的管理,因为对象实例占用内存的申请和释放都由 JVM 完成,Spark 只能在申请后和释放前记录这些内存。

对于 Spark 中序列化的对象,由于是字节流的形式,其占用的内存大小可直接计算,而对于非序列化的对象,其占用的内存是通过周期性地采样近似估算而得,这种方法降低了时间开销但是有可能误差较大,导致某一时刻的实际内存有可能远远超出预期。此外,在被 Spark 标记为释放的对象实例,很有可能在实际上并没有被 JVM 回收,导致实际可用的内存小于 Spark 记录的可用内存。所以 Spark 并不能准确记录实际可用的堆内内存,从而也就无法完全避免内存溢出(OOM, Out of Memory)的异常。

Spark 通过对存储内存和执行内存各自独立的规划管理,可以决定是否要在存储内存里缓存新的 RDD,以及是否为新的任务分配执行内存。
如果当前 Exector 内存不够用,可以分配到其他内存占用小的 Exector 上。
在一定程度上可以提升其他 Exector 的内存利用率,减少当前 Exector 异常的出现。

堆外内存

为了进一步优化内存的使用以及提高 Shuffle 时排序的效率,Spark 1.6 引入了堆外(Off-heap)内存,使之可以直接在工作节点的系统内存中开辟空间,存储经过序列化的二进制数据。

这种模式不在 JVM 内申请内存,而是调用 Java 的 unsafe 相关 API 进行诸如 C 语言里面的 malloc() 直接向操作系统申请内存,由于这种方式不进过 JVM 内存管理,所以可以避免频繁的 GC,这种内存申请的缺点是必须自己编写内存申请和释放的逻辑。

Spark 可以直接操作系统堆外内存,减少了不必要的内存开销,以及频繁的 GC 扫描和回收,提升了处理性能。堆外内存可以被精确地申请和释放,而且序列化的数据占用的空间可以被精确计算,所以相比堆内内存来说降低了管理的难度,也降低了误差。

在默认情况下堆外内存并不启用,可通过配置 spark.memory.offHeap.enabled 参数启用,并由 spark.memory.offHeap.size 参数设定堆外空间的大小,单位为字节。堆外内存与堆内内存的划分方式相同,所有运行中的并发任务共享存储内存和执行内存。

如果堆外内存被启用,那么 Executor 内将同时存在堆内和堆外内存,两者的使用互补影响,这个时候 Executor 中的 Execution 内存是堆内的 Execution 内存和堆外的 Execution 内存之和,同理,Storage 内存也一样。相比堆内内存,堆外内存只区分 Execution 内存和 Storage 内存。

spark内存分配

静态内存管理

在 Spark 最初采用的静态内存管理机制下,存储内存、执行内存和其他内存的大小在 Spark 应用程序运行期间均为固定的,但用户可以应用程序启动前进行配置,堆内内存的分配如图 所示:

可用堆内内存空间计算:

  • 可用的存储内存 = systemMaxMemory * spark.storage.memoryFraction * spark.storage.safetyFraction

  • 可用的执行内存 = systemMaxMemory * spark.shuffle.memoryFraction * spark.shuffle.safetyFraction

静态内存管理图示——堆外

统一内存管理

Spark 1.6 之后引入的统一内存管理机制,与静态内存管理的区别在于存储内存和执行内存共享同一块空间,可以动态占用对方的空闲区域,如图 所示

统一内存管理图示——堆内

reservedMemory 在 Spark 2.2.1 中是写死的

统一内存管理图示——堆外

其中最重要的优化在于动态占用机制,其规则如下:

  • 程序提交的时候我们都会设定基本的 Execution 内存和 Storage 内存区域(通过 spark.memory.storageFraction 参数设置);

  • 在程序运行时,如果双方的空间都不足时,则存储到硬盘;将内存中的块存储到磁盘的策略是按照 LRU 规则进行的。若己方空间不足而对方空余时,可借用对方的空间;(存储空间不足是指不足以放下一个完整的 Block)

  • Execution 内存的空间被对方占用后,可让对方将占用的部分转存到硬盘,然后"归还"借用的空间,Storage 占用 Execution 内存的数据被回收后,重新计算即可恢复。

  • Storage 内存的空间被对方占用后,目前的实现是无法让对方"归还",因为需要考虑 Shuffle 过程中的很多因素,实现起来较为复杂;而且 Shuffle 过程产生的文件在后面一定会被使用到

动态占用机制图示

Task 之间内存分布

为了更好地使用使用内存,Executor 内运行的 Task 之间共享着 Execution 内存。具体的,Spark 内部维护了一个 HashMap 用于记录每个 Task 占用的内存。当 Task 需要在 Execution 内存区域申请 numBytes 内存,其先判断 HashMap 里面是否维护着这个 Task 的内存使用情况,如果没有,则将这个 Task 内存使用置为0,并且以 TaskId 为 key,内存使用为 value 加入到 HashMap 里面。之后为这个 Task 申请 numBytes 内存,如果 Execution 内存区域正好有大于 numBytes 的空闲内存,则在 HashMap 里面将当前 Task 使用的内存加上 numBytes,然后返回;如果当前 Execution 内存区域无法申请到每个 Task 最小可申请的内存,则当前 Task 被阻塞,直到有其他任务释放了足够的执行内存,该任务才可以被唤醒。每个 Task 可以使用 Execution 内存大小范围为 1/2N ~ 1/N,其中 N 为当前 Executor 内正在运行的 Task 个数。一个 Task 能够运行必须申请到最小内存为 (1/2N * Execution 内存);当 N = 1 的时候,Task 可以使用全部的 Execution 内存。

比如如果 Execution 内存大小为 10GB,当前 Executor 内正在运行的 Task 个数为5,则该 Task 可以申请的内存范围为 10 / (2 * 5) ~ 10 / 5,也就是 1GB ~ 2GB的范围。

示例

1. 只用了堆内内存

现在我们提交的 Spark 作业关于内存的配置如下:
--executor-memory 18g
由于没有设置 spark.memory.fraction(Storage 和 Execution 共用内存 占可用内存的比例,默认为0.6) 和 spark.memory.storageFraction(Storage 内存占 Storage 和 Execution 共用内存 比例,默认0.5) 参数,我们可以看到 Spark UI 关于 Storage Memory 的显示如下:

上图很清楚地看到 Storage Memory 的可用内存是 10.1GB,这个数是咋来的呢?根据前面的规则,我们可以得出以下的计算:

systemMemory = spark.executor.memory
reservedMemory = 300MB
usableMemory = systemMemory - reservedMemory
StorageMemory= usableMemory * spark.memory.fraction * spark.memory.storageFraction

把数据代进去,得出结果为:5.312109375 GB。

和上面的 10.1GB 对不上。为什么呢?这是因为 Spark UI 上面显示的 Storage Memory 可用内存其实等于 Execution 内存和 Storage 内存之和,也就是 usableMemory * spark.memory.fraction

我们设置了 --executor-memory 18g,但是 Spark 的 Executor 端通过 Runtime.getRuntime.maxMemory 拿到的内存其实没这么大,只有 17179869184 字节,这个数据是怎么计算的?
Runtime.getRuntime.maxMemory 是程序能够使用的最大内存,其值会比实际配置的执行器内存的值小。这是因为内存分配池的堆部分分为 Eden,Survivor 和 Tenured 三部分空间,而这里面一共包含了两个 Survivor 区域,而这两个 Survivor 区域在任何时候我们只能用到其中一个,所以我们可以使用下面的公式进行描述:

ExecutorMemory = Eden + 2 * Survivor + Tenured
Runtime.getRuntime.maxMemory =  Eden + Survivor + Tenured
2. 用了堆内和堆外内存

现在如果我们启用了堆外内存,情况咋样呢?我们的内存相关配置如下:

spark.executor.memory           18g
spark.memory.offHeap.enabled    true
spark.memory.offHeap.size       10737418240

从上面可以看出,堆外内存为 10GB,现在 Spark UI 上面显示的 Storage Memory 可用内存为 20.9GB,如下:

总结

凭借统一内存管理机制,Spark 在一定程度上提高了堆内和堆外内存资源的利用率,降低了开发者维护 Spark 内存的难度,但并不意味着开发者可以高枕无忧。譬如,所以如果存储内存的空间太大或者说缓存的数据过多,反而会导致频繁的 GC 垃圾回收,降低任务执行时的性能。

使用建议

首先,建议使用新模式,所以接下来的配置建议都是基于新模式的。

  • spark.memory.fraction:如果 application spill 或踢除 block 发生的频率过高(可通过日志观察),可以适当调大该值,这样 execution 和 storage 的总可用内存变大,能有效减少发生 spill 和踢除 block 的频率

  • spark.memory.storageFraction:为 storage 占 storage、execution 内存总和的比例。虽然新方案中 storage 和 execution 之间可以发生内存借用,但总的来说,spark.memory.storageFraction 越大,运行过程中,storage 能用的内存就会越多。所以,如果你的 app 是更吃 storage 内存的,把这个值调大一点;如果是更吃 execution 内存的,把这个值调小一点

  • spark.memory.offHeap.enabled:堆外内存最大的好处就是可以避免 GC,如果你希望使用堆外内存,将该值置为 true 并设置堆外内存的大小,即设置
    spark.memory.offHeap.size,这是必须的

另外,需要特别注意的是,堆外内存的大小不会算在 executor memory 中,也就是说加入你设置了 --executor memory 10G 和 -spark.memory.offHeap.size=10G,那总共可以使用 20G 内存,堆内和堆外分别 10G。

参考

https://www.jianshu.com/p/d626a4f53d00

https://www.iteblog.com/archives/2342.html

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,047评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,807评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,501评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,839评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,951评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,117评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,188评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,929评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,372评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,679评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,837评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,536评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,168评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,886评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,129评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,665评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,739评论 2 351

推荐阅读更多精彩内容