常用数据结构——树

树(Tree)的基本概念
树是由结点或顶点和边组成的(可能是非线性的)且不存在着任何环的一种数据结构。没有结点的树称为空(null或empty)树。一棵非空的树包括一个根结点,还(很可能)有多个附加结点,所有结点构成一个多级分层结构。

二叉树

每个结点至多拥有两棵子树(即二叉树中不存在度大于2的结点),并且,二叉树的子树有左右之分,其次序不能任意颠倒。
二叉树的性质
1.若二叉树的层次从0开始,则在二叉树的第i层至多有2^i个结点(i>=0)
2.高度为k的二叉树最多有2^(k+1) - 1个结点(k>=-1)(空树的高度为-1)
3.对任何一棵二叉树,如果其叶子结点(度为0)数为m, 度为2的结点数为n, 则m = n + 1

二叉树又分为:完美二叉树,完全二叉树,完满二叉树
完美二叉树(满二叉树)

image

完全二叉树

image

完满二叉树

image

区别

image

二叉树的遍历方法

中序遍历:即左-根-右遍历,对于给定的二叉树根,寻找其左子树;对于其左子树的根,再去寻找其左子树;递归遍历,直到寻找最左边的节点i,其必然为叶子,然后遍历i的父节点,再遍历i的兄弟节点。随着递归的逐渐出栈,最终完成遍历
先序遍历:即根-左-右遍历
后序遍历:即左-右-根遍历

在Java中常见的树结构

二叉查找树

二叉查找树也称为有序二叉查找树,满足二叉查找树的一般性质,是指一棵空树具有如下性质:
任意节点左子树不为空,则左子树的值均小于根节点的值
任意节点右子树不为空,则右子树的值均大于于根节点的值
任意节点的左右子树也分别是二叉查找树
没有键值相等的节点

局限性及应用
一个二叉查找树是由n个节点随机构成,所以,对于某些情况,二叉查找树会退化成一个有n个节点的线性链.如下图:

image.png

AVL树

AVL树是带有平衡条件的二叉查找树,和红黑树相比,它是严格的平衡二叉树,平衡条件必须满足(所有节点的左右子树高度差不超过1).不管我们是执行插入还是删除操作,只要不满足上面的条件,就要通过旋转来保持平衡,而旋转是非常耗时的

使用场景:

AVL树适合用于插入删除次数比较少,但查找多的情况。
也在Windows进程地址空间管理中得到了使用
旋转的目的是为了降低树的高度,使其平衡

AVL树特点:
AVL树是一棵二叉搜索树
AVL树的左右子节点也是AVL树
AVL树拥有二叉搜索树的所有基本特点
每个节点的左右子节点的高度之差的绝对值最多为1,即平衡因子为范围为[-1,1]

红黑树

一种自平衡二叉查找树, 通过对任何一条从根到叶子的路径上各个节点着色的方式的限制,红黑树确保从根到叶子节点的最长路径不会是最短路径的两倍,用非严格的平衡来换取增删节点时候旋转次数的降低,任何不平衡都会在三次旋转之内解决

使用场景:

红黑树多用于搜索,插入,删除操作多的情况下
红黑树应用比较广泛:
1.广泛用在C++STL中。mapset都是用红黑树实现的。
2.著名的linux进程调度Completely Fair Scheduler,用红黑树管理进程控制块。
3.epoll在内核中的实现,用红黑树管理事件块
4.nginx中,用红黑树管理timer

原因:
红黑树的查询性能略微逊色于AVL树,因为比AVL树会稍微不平衡最多一层,也就是说红黑树的查询性能只比相同内容的AVL树最多多一次比较,但是,红黑树在插入和删除上完爆AVL树,AVL树每次插入删除会进行大量的平衡度计算,而红黑树为了维持红黑性质所做的红黑变换和旋转的开销,相较于AVL树为了维持平衡的开销要小得多

性质:
1.节点是红色或黑色。
2.根节点是黑色。
3.每个叶子节点都是黑色的空节点(NIL节点)。
4 每个红色节点的两个子节点都是黑色。(从每个叶子到根的所有路径上不能有两个连续的红色节点)
5.从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。

B树

B-树就是B树,-只是一个符号.
B树(B-Tree)是一种自平衡的树,它是一种多路搜索树(并不是二叉的),能够保证数据有序。同时它还保证了在查找、插入、删除等操作时性能都能保持在O(logn),为大块数据的读写操作做了优化,同时它也可以用来描述外部存储(支持对保存在磁盘或者网络上的符号表进行外部查找)

特点:
1.定义任意非叶子结点最多只有M个儿子;且M>2
2.根结点的儿子数为[2, M]
3.除根结点以外的非叶子结点的儿子数为[M/2, M]
4.每个结点存放至少M/2-1(取上整)和至多M-1个关键字;(至少2个关键字)
5.非叶子结点的关键字个数=指向儿子的指针个数-1
6.非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] < K[i+1]
7.非叶子结点的指针:P[1], P[2], …, P[M],其中P[1]指向关键字小于K[1]的子树,P[M]指向关键字大于K[M-1]的子树,其它P[i]指向关键字属于(K[i-1], K[i])的子树
8.所有叶子结点位于同一层

如:(M=3)

image.png

插入与平衡过程

这个图用以表示往 4 阶 B 树中依次插入下面这组数据的过程:
6 10 4 14 5 11 15 3 2 12 1 7 8 8 6 3 6 21 5 15 15 6 32 23 45 65 7 8 6 5 4

image

4 阶 B 树表示每个节点最多有 4 个子树、3 个关键字,最少有 2 个子树、一个关键字

添加/删除也是一样的,要考虑添加/删除孩子后,父节点是否还满足子树 k 介于 M/2M 的条件,不满足就得从别的节点拆子树甚至修改相关子树结构来保持平衡。

B+树

B+树是B-树的变体,也是一种多路搜索树
B+的搜索与B-树也基本相同,区别是B+树只有达到叶子结点才命中(B-树可以在非叶子结点命中),其性能也等价于在关键字全集做一次二分查找;

B+的特性:
1.所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好是有序的
2.不可能在非叶子结点命中
3.非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储(关键字)数据的数据层
4.更适合文件索引系统

原因: 增删文件(节点)时,效率更高,因为B+树的叶子节点包含所有关键字,并以有序的链表结构存储,这样可很好提高增删效率
如:(M=3)

image.png

使用场景:

文件系统和数据库系统中常用的B/B+ 树,他通过对每个节点存储个数的扩展,使得对连续的数据能够进行较快的定位和访问,能够有效减少查找时间,提高存储的空间局部性从而减少IO操作。他广泛用于文件系统及数据库中,如:
Windows:HPFS 文件系统
Mac:HFS,HFS+ 文件系统
Linux:ResiserFS,XFS,Ext3FS,JFS 文件系统
数据库:ORACLE,MYSQL,SQLSERVER 等中

B树:有序数组+平衡多叉树
B+树:有序数组链表+平衡多叉树

B+ 树的优点:

1.层级更低,IO 次数更少
2.每次都需要查询到叶子节点,查询性能稳定
3.叶子节点形成有序链表,范围查询方便

B+数插入和平衡

image

B+树还有一个最大的好处,方便扫库,B树必须用中序遍历的方法按序扫库,而B+树直接从叶子结点挨个扫一遍就完了,B+树支持range-query非常方便,而B树不支持。这是数据库选用B+树的最主要原因。

比如要查 5-10之间的,B+树一把到5这个标记,再一把到10,然后串起来就行了,B树就非常麻烦。B树的好处,就是成功查询特别有利,因为树的高度总体要比B+树矮。不成功的情况下,B树也比B+树稍稍占一点点便宜。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,254评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,875评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,682评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,896评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,015评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,152评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,208评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,962评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,388评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,700评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,867评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,551评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,186评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,901评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,689评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,757评论 2 351

推荐阅读更多精彩内容

  • 一些概念 数据结构就是研究数据的逻辑结构和物理结构以及它们之间相互关系,并对这种结构定义相应的运算,而且确保经过这...
    Winterfell_Z阅读 5,724评论 0 13
  • B树的定义 一棵m阶的B树满足下列条件: 树中每个结点至多有m个孩子。 除根结点和叶子结点外,其它每个结点至少有m...
    文档随手记阅读 13,202评论 0 25
  • 目录 1、什么是树 2、相关术语 3、二叉树 3.1、二叉树的类型 3.2、二叉树的性质 3.3、二叉树的结构 3...
    我哈啊哈啊哈阅读 2,541评论 0 10
  • 目录 0.树0.1 一般树的定义0.2 二叉树的定义 1.查找树ADT 2.查找树的实现2.1 二叉查找树2.2 ...
    王侦阅读 7,156评论 0 3
  • 上周的拍卖会上,有位北京用户收到了8个面试邀请,包括阿里、美团、滴滴和几个A轮的创业公司,在百度干了三年的他面对选...
    ffa8d8c7a037阅读 1,172评论 0 3