deeplab系列总结

前言

在传统的语义分割问题上,存在的三个挑战:

  • 传统分类CNN中连续的池化何降采样导致空间分辨率下降。(解决:去掉最后几层的降采样和最大池化,使用上采样滤波器,得到采样率更高的特征)
  • 对象对尺度检测问题,使用重新调节尺度并聚合特征图,但是计算量较大。(解决:对特征层重采样,得到多尺度的图像文本信息,使用多个并行ACNN进行多尺度采样,陈伟ASPP)
  • 以物体为中心的分类,需要保证空间转换不变性。(解决:跳跃层结构,从多个网络层中抽取高层次特征进行预测;使用全连接条件随机场进行边界预测优化)

Deeplab系列针对的是语义分割任务。对于语义分割任务要求:

  • 语义分割是对图像做密集的分割任务,分割每个像素到指定的类别上;
  • 将图像分割成几个有意义的目标;
  • 给对象分配指定的类别标签。

Deeplab v1 & v2

论文Deeplab v1
由于语义分割是像素级别的分类,高度抽象的空间特征对low-level并不适用,因此必须要考虑feature map 的尺寸和空间不变性。
feature map变小是因为stride的存在,stride>1是为了增加感受野的,如果stride=1,要保证相同的感受野,则必须是卷积核大小变大,因此,论文使用hole算法来增加核大小进而达到相同的感受野,也就是空洞卷积。
图像输入CNN后是一个倍逐步抽象的过程,原来的位置信息会随着深度而减少甚至消失。条件随机场在传统图像处理上做一个平滑,也就是说在决定一个位置的像素值时,能够考虑周围邻居的像素值,抹茶一些噪音。

具体的操作为:移除原网络最后两个池化层,使用rate=2的空洞卷积采样。标准的卷积只能获取原图1/4的内容,而新的带孔的卷积能够在全图上获取信息。

Astrous conv

对使用了s=2后的lower resolution feature map再进行标准的卷积的效果和在原来的feature map上使用rate=2的空洞卷积的效果是一样的。


空洞卷积

ASPP结构

使用多尺度进行空洞卷积,在经过1*1的卷积之后连接起来。多尺度特征提取,得到全局和局部特征


ASPP结构
DeeplabV1

DeeplabV1是在VGG16的基础上做了修改:

  • VGG16的全连接层转为卷积;
  • 最后两个池化层去掉,后续使用空洞卷积。

DeeplabV2

Deeplab v2
Deeplabv2是在v1上进行改进的:

  • 使用多尺度获得更好的分割效果(使用ASPP)
  • 基础层由VGG16转为ResNet
  • 使用不同的学习策略

Deeplab V1和V2的优点:

  • 速度上:使用空洞卷积的Dense DCNN速度比全连接层快;
  • 准确度高

Deeplab v3

v3的主要创新点就是改进了ASPP模块,一个11的卷积和3个33的空洞卷积,每个卷积核有256个且都有BN层,包含图像及特征(全局平均池化)。

  • 提出了更通用的框架,适用于任何网络;
  • 复制了resnet最后的block,并级联起来
  • 在ASPP中使用BN层
  • 没有随机向量场


    Deeplab v3

    全局特征或上下文之间的相互作用有助于做语义特征,现有四种不同类型利用上下文信息做语义分割的全卷积神经网络:

  • 1)图像金字塔:通常使用共享权重的模型,适用于多尺寸的输入。小尺寸输入响应控制语义,大尺寸的输入响应控制细节。通过拉普拉斯金字塔对输入变化成多尺度,传入DCNN,融合输出。缺点:因为GPU存储器的限制,对于更大更深的模型不方便扩展。
  • 2)Encoder-Decoder:编码器的高层次的特征容易捕获更长的距离信息,在解码器阶段使用编码器阶段的信息帮助恢复目标的细节和空间维度。
  • 3)上下文模块:包含了额外的模块用于级联编码长距离的上下文。例如空洞卷积。
  • 4)空间金字塔池化:采用空间金字塔池化可以捕获多个层次的上下文。

Deeplab v3+

空间金字塔池化模块(SPP)和编码解码结构,用于语义分割的深度网络结构。SPP利用多种比例和多种有效感受野的不同分辨率特征处理,来挖掘多尺度的上下文内容信息,编解码结构逐步重构空间信息来更好的捕捉物体边界。

参考文献

[1]deeplab 官方PPT
[2]Deeplab v1---v3+

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,001评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,210评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,874评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,001评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,022评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,005评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,929评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,742评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,193评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,427评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,583评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,305评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,911评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,564评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,731评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,581评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,478评论 2 352

推荐阅读更多精彩内容