Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models

Summary

This paper introduces a new prompting strategy called Plan-and-Solve (PS) prompting to improve the performance of large language models (LLMs) in multi-step reasoning tasks. The authors propose two components of PS prompting: devising a plan to divide the task into smaller subtasks, and carrying out the subtasks according to the plan. They also extend PS prompting with more detailed instructions to address calculation errors and improve the quality of generated reasoning steps, resulting in PS+ prompting.

The proposed prompting strategies are evaluated on ten datasets across three reasoning problems: arithmetic reasoning, commonsense reasoning, and symbolic reasoning. The experimental results show that zero-shot PS prompting consistently outperforms Zero-shot-CoT prompting across all datasets, is comparable to or exceeds Zero-shot-Program-of-Thought (PoT) prompting, and has comparable performance with 8-shot CoT prompting on the math reasoning problem.

Key Takeaways

Introduction

  • Large language models (LLMs) have proven effective in various NLP tasks.
  • Fine-tuning LLMs for downstream tasks is challenging due to limited access to model parameters.
  • Zero-shot-CoT prompting has been successful in solving multi-step reasoning tasks but suffers from calculation errors, missing-step errors, and semantic misunderstanding errors.

Plan-and-Solve Prompting

  • Plan-and-Solve (PS) prompting consists of two components: devising a plan to divide the task into smaller subtasks, and carrying out the subtasks according to the plan.
  • PS prompting addresses missing-step errors by explicitly generating reasoning steps.
  • PS+ prompting extends PS prompting with more detailed instructions to improve the quality of generated reasoning steps.
  • PS+ prompting can be customized to solve a variety of problems other than math reasoning.

Experimental Results

  • The proposed prompting strategies are evaluated on ten benchmark datasets.
  • Zero-shot PS prompting consistently outperforms Zero-shot-CoT prompting across all reasoning problems and datasets.
  • Zero-shot PS prompting is comparable to or exceeds Zero-shot-PoT prompting.
  • PS+ prompting has a performance similar to an 8-shot CoT prompting in arithmetic reasoning.

Methods

Plan-and-Solve Prompting

  • Step 1: Prompting for Reasoning Generation
    • Construct templates to elicit LLMs to determine subtasks and accomplish them.
    • Use a prompt with a simple template "Q: [X]. A: [T]" where [X] contains the input problem statement and [T] is a hand-crafted instruction to trigger LLMs to generate a reasoning process.
    • Replace "Let's think step by step" with "Let's first understand the problem and devise a plan to solve the problem. Then, let's carry out the plan and solve the problem step by step."
    • Add more detailed instructions to the trigger sentence, such as "pay attention to calculation", "extract relevant variables and their corresponding numerals", and "calculate intermediate results".
  • Step 2: Prompting for Answer Extraction
    • Devise another prompt to extract the final numerical answer from the reasoning text generated in Step 1.

Experimental Setup

  • Evaluate the proposed prompting strategies on ten benchmark datasets from three categories of reasoning problems: arithmetic reasoning, commonsense reasoning, and symbolic reasoning.
  • Compare the performance of zero-shot PS and PS+ prompting with three types of prompting baselines: zero-shot-CoT, zero-shot-PoT, and few-shot with manual or automatic demonstrations.
  • Use GPT-3 (175B) as the backbone language model and set the temperature to 0 for greedy decoding.

Conclusion

  • Zero-shot PS prompting outperforms Zero-shot-CoT prompting and is comparable to or exceeds Zero-shot-PoT prompting.
  • PS+ prompting has a performance similar to an 8-shot CoT prompting in arithmetic reasoning.
  • The results suggest that PS prompting can generate a higher-quality reasoning process and has the potential to outperform manual few-shot CoT prompting.
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,039评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,223评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,916评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,009评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,030评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,011评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,934评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,754评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,202评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,433评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,590评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,321评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,917评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,568评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,738评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,583评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,482评论 2 352

推荐阅读更多精彩内容