秦九韶算法

本章涉及知识点

1、多项式计算式

2、如何在1毫秒内计算出多项式结果

3、秦九韶算法

4、改善程序算法

一、多项式计算式

假设我们有如下计算式,求当x=2时f(x)的值

一元n次多项式

这是一个一元n次多项式,涉及到的四则运算包含加法和乘法,我们的需求是尽可能在1毫秒之内计算出其结果

二、如何在1毫秒内计算出多项式结果

直观上想到的第一种方法就是直接带入x=2运算即可,下面为了演示计算的消耗时间,我们用JavaScript语言作为计算演示(当然,不限于任何语言来演示)

为了尽快计算结果,我们可以分析出程序要尽量减少调用API

为此我们编写出如下程序

直接计算f(x)

代码中除了调用console.log方法耗时,并没有调用其余API函数,我们带入x=2直接计算出结果

直接计算多项式结果

可以看到程序运行大约2毫秒,多运行几次,大概需要2~3毫秒之间,偶尔会出现1毫秒,显然不符合我们的需求

那么问题出在哪里呢?我们已经尽可能减少API的调用,所以我们需要聚焦到f(x)多项式本身

观察f(x),发现这个多项式进行了4次加法操作,那么乘法的次数呢?进行了7+6+4+1=18次乘法,在计算机里,乘法的本质就是加法,且乘法的耗时要大于加法,那么自然而然我们只有降低乘法的次数,才能提高f(x)的计算速度

三、秦九韶算法

我们抽象出一般的一元多项式

一般化一元n次多项式

容易计算出,f(x)进行了n次加法计算,进行的乘法计算次数为等差数列的求和:

乘法计算次数

显然,f(x)乘法的计算次数要远远大于加法的计算次数,我们需要利用我国南宋时期著名数学家秦九韶算法进行多项式等效变形

秦九韶算法

秦九韶算法使用提取x公因式和整体换元法来等效的变形了f(x),而经过算法变形之后,我们可以看到f(x)的乘法计算次数降低到了n次

这样对于n次多项式的求值为题,就转化为n个一次多项式的求值问题,妙哉!

四、改善程序算法

我们明白了需要问题的关键是要降低乘法计算次数,利用秦九韶算法,我们做如下变形f(x)

秦九韶算法变形f(x)

修改程序为

秦九韶算法计算f(x)
秦九韶算法结果

减少了乘法计算次数,程序的计算速度也提高了

最后我们可以根据秦九韶算法总结出:对于一个n次多项式,至多做n次乘法和n次加法

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,377评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,390评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,967评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,344评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,441评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,492评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,497评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,274评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,732评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,008评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,184评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,837评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,520评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,156评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,407评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,056评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,074评论 2 352

推荐阅读更多精彩内容

  • 普通算法 f1(x) = a0 + a1x + a2x^2 + ... + an-1x^(n-1) + anx^n...
    Rush的博客阅读 2,958评论 0 0
  • 算法和数据结构 [TOC] 算法 函数的增长 渐近记号 用来描述算法渐近运行时间的记号,根据定义域为自然数集$N=...
    wxainn阅读 1,060评论 0 0
  • 首页 资讯 文章 资源 小组 相亲 登录 注册 首页 最新文章 IT 职场 前端 后端 移动端 数据库 运维 其他...
    Helen_Cat阅读 3,860评论 1 10
  • 我会拥抱太阳不怕被那炙热的太阳融化。 引用了一句歌词来开始这篇文章,这是一个13岁的女孩写的一首歌中的...
    浪哒阅读 183评论 0 0
  • 引言 无数的狗主人目睹了家庭自制喂狗的好处,比如清洁牙齿、让眼睛更明亮、让毛发更有光泽、更瘦更有肌肉、让身体脂肪更...
    朝酒暮歌阅读 1,683评论 0 1