Day 21 二叉树: 530. 搜索树最小绝对差, 501. 搜索树众数, 236. 最近公共祖先

530. 二叉搜索树的最小绝对差

  • 思路
    • example
    • 返回 树中任意两不同节点值之间的最小差值
    • 二叉搜索树(BST): 对应有序(递增)数组 (中序遍历)
    • 最小差值肯定在相邻两个元素间取得。(如果求最大绝对差只需第1个和最后1个的绝对差)
    • 解法1:递归,中序遍历转化为有序数组,额外空间
      • 复杂度. 时间:O(n), 空间: O(n
class Solution:
    def getMinimumDifference(self, root: Optional[TreeNode]) -> int:
        def traversal(root):
            if root == None:
                return 
            traversal(root.left)
            nums.append(root.val)
            traversal(root.right)
        nums = []
        traversal(root)
        res = float('inf')
        for i in range(1, len(nums)):
            res = min(res, abs(nums[i] - nums[i-1]))
        return res
  • 解法2:递归,中序遍历,维护pre节点
    • 可看成是在BST上的双指针(pre, cur), 同向
class Solution:
    def getMinimumDifference(self, root: Optional[TreeNode]) -> int:
        def traversal(root):
            nonlocal pre, res 
            if root == None:   
                return 
            traversal(root.left)
            if pre:
                res = min(res, abs(pre.val - root.val))
            pre = root 
            traversal(root.right) 
        pre = None  
        res = float('inf')
        traversal(root)
        return res 
  • 解法3:迭代,中序遍历,维护pre节点
class Solution:
    def getMinimumDifference(self, root: Optional[TreeNode]) -> int:
        cur = root 
        stack = []
        pre = None
        res = float('inf')
        while cur or stack:
            if cur: 
                stack.append(cur)
                cur = cur.left 
            else:
                cur = stack.pop()
                if pre:
                    res = min(res, abs(pre.val - cur.val))
                pre = cur 
                cur = cur.right 
        return res
class Solution:
    def minDiffInBST(self, root: Optional[TreeNode]) -> int:
        def traversal(root):
            nonlocal pre, res 
            if root == None:
                return 
            traversal(root.left)
            if pre:
                res = min(res, abs(root.val - pre.val))
            pre = root 
            traversal(root.right)
        pre = None 
        res = float('inf')
        traversal(root)
        return res

501. 二叉搜索树中的众数

  • 思路
    • example
    • 含重复值
    • 有序数组累计频率
    • 递归,中序,维护pre节点, 双指针
      • pre节点
      • max_freq
      • cur_freq
      • res = [] 保存结果
  • 复杂度. 时间:O(n), 空间: O(1) (如果递归栈不算在内)
class Solution:
    def findMode(self, root: Optional[TreeNode]) -> List[int]:
        def traversal(root):
            nonlocal pre, cnt, cnt_max, res 
            if root == None:
                return 
            traversal(root.left)
            if pre:
                if root.val == pre.val:
                    cnt += 1
                else:
                    cnt = 1
            else:
                cnt = 1
            if cnt > cnt_max:
                cnt_max = cnt 
                res = [root.val]
            elif cnt == cnt_max:
                res.append(root.val)
            pre = root 
            traversal(root.right)
        cnt, cnt_max = -1, -float('inf')
        pre = None 
        res = []
        traversal(root)
        return res 
class Solution:
    def findMode(self, root: Optional[TreeNode]) -> List[int]:
        def traversal(root):
            nonlocal pre, cnt, max_cnt 
            nonlocal res # !!!
            if root == None:
                return 
            traversal(root.left)
            if pre == None:
                cnt = 1
            else:
                if root.val == pre.val:
                    cnt += 1
                else:
                    cnt = 1
            if cnt > max_cnt:
                max_cnt = cnt
                res = [root.val]
            elif cnt == max_cnt:
                res.append(root.val) 
            pre = root 
            traversal(root.right)
        res = []
        pre = None 
        cnt, max_cnt = 0, 0 
        traversal(root)
        return res 

236. 二叉树的最近公共祖先

  • 思路
    • example
    • 所有 Node.val 互不相同.
    • p and q will exist in the tree.
    • 递归dfs,前序,回溯自上而下,保存根节点到p,q的两条路径
    • 在路径中找最近公共祖先
      • 更直观。
      • 比较多细节。
      • 适用更一般的情况。
  • 复杂度. 时间:O(n), 空间: O(n)
class Solution:
    def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
        def traversal(root, targetNode):
            if root == targetNode:
                paths.append(path[:])
                return 
            if root.left: 
                path.append(root.left)
                traversal(root.left, targetNode)
                path.pop() 
            if root.right: 
                path.append(root.right)
                traversal(root.right, targetNode) 
                path.pop()
        paths = [] # save path results
        path = [root] # local path
        traversal(root, p)
        traversal(root, q)
        ancestor = None
        for i in range(min(len(paths[0]), len(paths[1]))):
            if paths[0][i] == paths[1][i]:
                ancestor = paths[0][i]
            else:
                break  
        return ancestor
  • 上面的代码递归找path的时候仍然遍历了整棵树。
  • 优化:提早return
class Solution:
    def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
        def traversal(root, targetNode):
            if root == targetNode:
                paths.append(path[:])
                return True
            if root.left: 
                path.append(root.left)
                if traversal(root.left, targetNode):
                    return True
                path.pop() 
            if root.right: 
                path.append(root.right)
                if traversal(root.right, targetNode):
                    return True
                path.pop()
            return False
        paths = [] # save path results
        path = [root]
        traversal(root, p)
        path = [root] # 需要重新初始化!!!
        traversal(root, q)
        ancestor = None
        for i in range(min(len(paths[0]), len(paths[1]))):
            if paths[0][i] == paths[1][i]:
                ancestor = paths[0][i]
            else:
                break  
        return ancestor
  • 递归,后序自下而上,回溯

返回值:p, q, None, 或者LCA(p,q)

  • 遍历整棵树
  • 不直观, 注意Base Case的逻辑。
  • 前提:树中必有p,q节点,并且树中节点数值各不相同!!!
  • def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
    • 函数意义:
      • 树中含有p,q时,返回最近公共祖先
      • 树中只含p或q的一个时,返回相应的节点
      • 树中不含p和q时,返回None
    • 后序:结合左子树与右子树遍历结果
      • 如果左子树含有p,q。那么左子树返回结果即为答案。如果右子树含有p,q. 那到右子树返回结果即为答案。
      • 如果左子树只含q,q中的一个,返回左子树结果。如果右子树只含q,q中的一个,返回右子树结果。
class Solution:
    def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
        if root == None:
            return None 
        if root == p or root == q:
            return root 
        left = self.lowestCommonAncestor(root.left, p, q)
        right = self.lowestCommonAncestor(root.right, p, q)
        if left and right:
            return root 
        if left == None:
            return right 
        if right == None:
            return left 
class Solution:
    def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
        def traversal(root):
            if root == None:
                return None 
            if root == p or root == q:
                return root 
            left = traversal(root.left) 
            right = traversal(root.right) 
            if left == None:
                return right 
            if right == None:
                return left 
            return root 
        return traversal(root) 
class Solution:
    def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
        if root == None:
            return None   
        left = self.lowestCommonAncestor(root.left, p, q)
        right = self.lowestCommonAncestor(root.right, p, q)  
        if root.val == p.val or root.val == q.val:
            return root  
        if left and right == None:
            return left  
        if left == None and right:
            return right 
        if left == None and right == None:
            return None  
        if left and right:
            return root  
class Solution:
    def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
        def traverse(root):
            if root == None:
                return None 
            left = traverse(root.left)
            right = traverse(root.right) 
            if root == p or root == q:
                return root 
            if left == p and right == q:
                return root 
            if left == q and right == p:
                return root 
            if left != None:
                return left 
            if right != None:
                return right 
            return None 
        return traverse(root)
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

友情链接更多精彩内容