CRNN 文本识别算法实现不定长文字识别

--> 在六七月份参加了一个比赛,做的项目是提取图片中的文字信息,首先是接触了一些文本检测算法(如CTPN,East),后研究了文本识别算法(我认为较好的是CRNN)。代码实现是参考算法提出者的pytorch,python3版本的crnn实现。因为python版本的迭代,导致代码重使用比较难,其中涉及到ctc,python编码,中文数据集,如何将模型finetune到自己的应用场景上种种问题。实现的深度学习框架是pytorch,虽然TensorFlow也可以,但是比较多坑。其实是什么框架实现的都没关系,现在语法都是比较简单,看懂不难!

因为自己已经踩了很多坑,也填好了这些坑,就将自己填好的项目贡献给大家!
(https://github.com/Sierkinhane/crnn_chinese_characters_rec) 代码地址

这次分享的是文本识别算法CRNN,具体的内容我就不涉及了,这篇文章主要是做算法代码的实现(参考原作者),建议大家研读算法一定要看作者发的Paper! CRNN论文地址:http://arxiv.org/abs/1507.05717(作者是华中科技大学的老师)

先放一些效果图,利用360万的中文数据训练集,最后可以finetune到97.7%的验证准确率,训练好的模型在train_models文件夹

1.png

2.png

1.png
results.png

第一、二张图片是最近修改的一个demo,第三、四张图是CTPN算法和CRNN的结合,可以将图片上的任何文字信息提取。因为CTPN要求的环境比较复杂,所以这次只放出CRNN的代码,因为CRNN实现环境比较简单。

现在开始介绍代码:


2.png

代码的实现必须是Linux环境(因为涉及到warp-ctc的安装,最好是Ubuntu16.04,能跳的坑我基本都填了)

1. Warp-ctc安装

首先得安装warp-ctc https://github.com/SeanNaren/Warp-ctc,这是pytorch版本的ctc实现(计算序列loss,具体看论文),安装方法按照作者的步骤即可,如果遇到问题可以私聊我。我是在Ubuntu16.04安装的,并没有太大问题,但是在17.04就遇到很多问题,所以最好用Ubuntu16.04作为代码实现环境。

2. 测试

安装好ctc后,直接运行终端输入 python3 test.py 试下效果,测试图片在test_images文件夹下。

3. 训练

3.png

正确的训练效果如图。

训练之前首先制作数据集,因为360万的中文数据集制作成lmdb格式的数据有十几G,就没直接放到Github中。

先下载360万中文数据集:https://pan.baidu.com/s/1ufYbnZAZ1q0AlK7yZ08cvQ

对于数据集我想说明一下,在文字识别领域有比较多的识别场景,例如场景文本识别,比较正规的图片信息识别,这些不同的应用场景需要对应不同的数据集训练,这次我自己应用到的场景比较正规的字体识别,所以这个训练集不一定能够用到所有场景,但也确实提供了一个不错数据集资源!还有就是训练集最好是具有语义信息,如果只是将文字随机的组合生成图片作为训练集,模型收敛会更慢并且准确率受限!

下图是部分训练集


chinese_char.png

(这个数据是在Github中找到的,暂时没找到他的地址,很感谢作者的奉献!)
数据集是随机选取定长的字数,经过模糊、倾斜、颜色变化等操作之后生成的,比较具有一般性,能很好地提升模型的Robust。

下载好数据集之后如果解压出错,不完整,可以用好压进行修复。
接下来是制作lmdb格式的数据。

图片与之对应的标签我链接:https://pan.baidu.com/s/1jfAKQVjD-SMJSffOwGhh8A 密码:u7bo,只需要将下载好的数据集放到lmdb文件中,根据情况修改to_lmdb.py中的文件名 运行该py程序就可以制作lmdb格式的数据!

制作好数据集之后将它放到lmdb_dataset文件夹中调出终端:

python3 crnn_main.py --train_root 训练数据集路径 --val_root 验证集路径 --cuda (如果有cuda加速可选)
大概流程就是这样了,最主要的还是自己看待自己琢磨!
(不定长识别是将训练集图片的放缩feed到神经网络中的尺寸应用到测试中,test.py已经标注!)

(如果有帮助到你,可以在Github给我个star!)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,922评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,591评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,546评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,467评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,553评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,580评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,588评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,334评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,780评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,092评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,270评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,925评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,573评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,194评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,437评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,154评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352