【Spark Java API】Transformation(5)—cartesian、distinct

cartesian


官方文档描述:

Return the Cartesian product of this RDD and another one, that is, the RDD of all pairs of elements (a, b) where a is in `this` and b is in `other`.

函数原型:

def cartesian[U](other: JavaRDDLike[U, _]): JavaPairRDD[T, U]

源码分析:

 def getPartitions: Array[Partition] = {  
// create the cross product split  
val array = new Array[Partition(rdd1.partitions.length * rdd2.partitions.length)  
for (s1 <- rdd1.partitions; s2 <- rdd2.partitions) {    
    val idx = s1.index * numPartitionsInRdd2 + s2.index    
    array(idx) = new CartesianPartition(idx, rdd1, rdd2, s1.index, s2.index)  
  }  array
}

def getDependencies: Seq[Dependency[_]] = List(  
new NarrowDependency(rdd1) {    
  def getParents(id: Int): Seq[Int] = List(id / numPartitionsInRdd2) 
 },  
new NarrowDependency(rdd2) {    
  def getParents(id: Int): Seq[Int] = List(id % numPartitionsInRdd2)  
}
)

**
Cartesian 对两个 RDD 做笛卡尔集,生成的 CartesianRDD 中 partition 个数 = partitionNum(RDD a) * partitionNum(RDD b)。从getDependencies分析可知,这里的依赖关系与前面的不太一样,CartesianRDD中每个partition依赖两个parent RDD,而且其中每个 partition 完全依赖(NarrowDependency) RDD a 中一个 partition,同时又完全依赖(NarrowDependency) RDD b 中另一个 partition。具体如下CartesianRDD 中的 partiton i 依赖于 (RDD a).List(i / numPartitionsInRDDb) 和 (RDD b).List(i % numPartitionsInRDDb)。
**

实例:


List<Integer> data = Arrays.asList(1, 2, 4, 3, 5, 6, 7);
JavaRDD<Integer> javaRDD = javaSparkContext.parallelize(data);

JavaPairRDD<Integer,Integer> cartesianRDD = javaRDD.cartesian(javaRDD);
System.out.println(cartesianRDD.collect());

distinct


官方文档描述:

Return a new RDD containing the distinct elements in this RDD.

函数原型:

def distinct(): JavaRDD[T]

def distinct(numPartitions: Int): JavaRDD[T]

**
第一个函数是基于第二函数实现的,只是numPartitions默认为partitions.length,partitions为parent RDD的分区。
**

源码分析:

def distinct(): RDD[T] = withScope {  distinct(partitions.length)}

def distinct(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T] = withScope {  
  map(x => (x, null)).reduceByKey((x, y) => x, numPartitions).map(_._1)
}

**
distinct() 功能是 deduplicate RDD 中的所有的重复数据。由于重复数据可能分散在不同的 partition 里面,因此需要 shuffle 来进行 aggregate 后再去重。然而,shuffle 要求数据类型是 <K, V> 。如果原始数据只有 Key(比如例子中 record 只有一个整数),那么需要补充成 <K, null> 。这个补充过程由 map() 操作完成,生成 MappedRDD。然后调用上面的 reduceByKey() 来进行 shuffle,在 map 端进行 combine,然后 reduce 进一步去重,生成 MapPartitionsRDD。最后,将 <K, null> 还原成 K,仍然由 map() 完成,生成 MappedRDD。
**

实例:

List<Integer> data = Arrays.asList(1, 2, 4, 3, 5, 6, 7, 1, 2);
JavaRDD<Integer> javaRDD = javaSparkContext.parallelize(data);

JavaRDD<Integer> distinctRDD1 = javaRDD.distinct();
System.out.println(distinctRDD1.collect());
JavaRDD<Integer> distinctRDD2 = javaRDD.distinct(2);
System.out.println(distinctRDD2.collect());
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,874评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,102评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,676评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,911评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,937评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,935评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,860评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,660评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,113评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,363评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,506评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,238评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,861评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,486评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,674评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,513评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,426评论 2 352

推荐阅读更多精彩内容