gget alphafold三行命令预测蛋白质三维结构

近些天,AlphaFold在热度不减的基础上又火了一把,二话不说直接确定了约2亿个蛋白质的结构,范围覆盖地球上几乎所有已知生物[1]。

尽管AlphaFold2可以通过Docker运行,但是

  • 需要下载数据库(需要消耗约3TB的存储空间)
  • 12vCPU, 85GB RAM的高计算要求(远超笔记本)

逛Twitter的时候,发现有一款新的工具gget alphafold[2]用于预测蛋白质的3D结构,我们本期就来盘一盘这个新工具。

按作者的话说,gget alphafold 基于2.0版本的AlphaFold,在任何电脑/服务器上的Python环境下,仅仅只需要4 GB的硬盘,三行代码就可以运行。这对个人用户相当友好!

应用相同的算法,gget alphaold 产生与 AlphaFold Colab 相似的结果。

为了证明它的准确性好使,作者将与她18年的工作[3]中预测的结构进行了比较。

预测是不完美的,这也说明了AlphaFold2的局限性,主要是在预测参考数据库中没有发现的残基时(如GFP和传感器之间的linker)。

但结构预测可以引导我们(作者)猜测哪些残基会发生突变。


gget alphafold会返回每个氨基酸的预测结构(PDB)和比对误差(json),PDB可以通过https://www.rcsb.org/3d-view或PyMOL查看。

当然,gget alphafold也不是唯一的通过命令行运行alphafold的工具,Martin Steinegger的实验室曾开发了一个ColabFold[4],可在本地运行预测,不足之处是也需要下载940GB的数据库。

为了尽量减少依赖性,gget alphaold 目前还没有配置利用 GPU,与 AlphaFold Colab 相比,可能需要多达10倍的时间才能在本地计算机上运行。然而,由于它的轻量化,它可以很容易地集成到现有的工作流。

关于内存占用,作者表示最多几个G,你甚至可以用17款的MacBook,一边看HD的netflix一边预测蛋白结构。

最后作者提供了一个Colab notebook链接[5],让大家无需服务器,点点点就能完成蛋白结构预测。

实测环节

选择了我们韩老板在18年发表在Nature上的文章A kiwellin disarms the metabolic activity of a secreted fungal virulence factor中的Cmu1蛋白[6]作为测试对象。

Linux

# 创建一个新的python3.8小环境
conda create -n gget python=3.8 -y
conda activate gget
conda install gget -y

# 安装依赖
conda install -c conda-forge openmm=7.5.1 -y

python # 进入python环境
import gget
gget.setup("alphafold") # 需要安装一会依赖
# 输入蛋白序列即可预测
gget.alphafold("MKLSVSIFVLLAVSAFGGGSAAAVSGKSEAAEIEAGDRLDALRDQLQRYETPIIQTILARSALGGRAPSEQDEVRAALSRNAFEPSEVISEWLQTESGARFRSTRPLPPAVEFITPVVLSRDTVLDKPVVGKGIFPIGRRPQDPTNMDEFLDTSLLSLNQSSTVDLASAVSLDVSLLHLVSARVLLGYPIALAKFDWLHDNFCHILTNTTLSKSQKLANIIQQLTDHKQEVNVLSRVEQKSKSLSHLFRNDIPYPPHTQDRILRLFQAYLIPITTQIEAAAILDHANKCT")

耗时2 h起步。

Colab在线(推荐)

这个就非常简单了,不要修改下图中的命令,按箭头顺序点击运行命令。

运行结束后会输出四张图。

实测在Colab上不到1.5 h就完成了预测,准确性似乎还行。

参考资料

[1]‘The entire protein universe’: AI predicts shape of nearly every known protein: https://www.nature.com/articles/d41586-022-02083-2
[2]Laura Luebbert的推特原文: https://twitter.com/NeuroLuebbert/status/1555968173609865216
[3]Fluorescence activation mechanism and imaging of drug permeation with new sensors for smoking-cessation ligands: https://elifesciences.org/articles/74648
[4]ColabFold: https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb
[5]Colab notebook链接: https://colab.research.google.com/drive/1IcpXnPD8rrmngr1x3SuQQiE0X_f4lGpY?usp=sharing
[6]Cmu1蛋白: https://www.ncbi.nlm.nih.gov/protein/A0A0D1DWQ2.1

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,504评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,434评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,089评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,378评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,472评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,506评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,519评论 3 413
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,292评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,738评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,022评论 2 329
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,194评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,873评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,536评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,162评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,413评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,075评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,080评论 2 352

推荐阅读更多精彩内容