AILearning:GitHub万星的中文机器学习资源,路线图、视频、电子书、学习建议全在这

来源:量子位

再也不用在学机器学习之前先恶补英语了,这儿有一套超热门的优质中文资源可以选择。

这套名叫AI Learning的GitHub资源,汇集了30多名贡献者的集体智慧,把学习机器学习的路线图、视频、电子书、学习建议等中文资料全部都整理好了。

目前资源在GitHub上已经有一万颗Star,微博网友:好人一生平安。

image

事不宜迟,来看看这里面有啥。

从入门到大牛

很多初学者都会遇到这样的问题:入门机器学习应该从哪里学起?

这些过来人表示,学习路径分三步,先学机器学习基础,然后攻克深度学习基础,最后学习自然语言处理(NLP)相关知识。贡献者表示:按照这个流程来学习,你可以当大牛。

在机器学习基础部分,贡献者给出的学习路线图是这样的:

  1. 机器学习基础
  2. KNN近邻算法
  3. 决策树
  4. 朴素贝叶斯
  5. 逻辑回归
  6. SVM支持向量机
  7. 集成方法
  8. 回归
  9. 树回归
  10. K-Means聚类
  11. 利用Apriori算法进行关联分析
  12. FP-growth高效发现频繁项集
  13. 利用PCA来简化数据
  14. 利用SVD来简化数据
  15. 大数据与MapReduce
  16. 推荐系统

在上面16个学习模块中,是知识点介绍、常用工具和实战项目等不同类型的学习资源的整合版。点进去就是具体学习资料,非常方便。

比如决策树模块,先介绍了概念与主要场景:

image

然后介绍了具体的项目案例和开发流程代码:

image

每个模块还有配套视频,一并服用效果更好:

image

即使以后出现了新的学习资源,这套方法论也可以用上。

深度学习基础部分在第一部分的基础上,继续扩展了反向传播、CNN原理、RNN原理和LSTM四个知识点:

image

每个知识点对应一个口碑介绍帖,内文图文并茂。

NLP内容的学习路径偏向于实际应用,在文本分类、语言建模、图像字幕、机器翻译、问答系统、语音识别、自动文摘7个领域极少,还一并放上了大量相关数据集:

image

省去了为找数据集跑断腿的烦恼。

机器学习零食库

除了能get到完整学习路径持续通关,还能在里面找到人们机器学习资料“单品”。

有经典口碑英文视频吴恩达篇:

image

有入门专项训练篇等任君挑选:

image

整理好的电子书,直接下载PDF即可使用:

image

最后,这个神奇的页面还自带贡献者们自己摸爬滚打的心路历程和学习建议。

image

看来这个资源,够你用很久了↓↓

传送门

GitHub地址:https://github.com/apachecn/AiLearning

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 1. 引言 也许你和这个叫『机器学习』的家伙一点也不熟,但是你举起iphone手机拍照的时候,早已习惯它帮你框出人...
    mlion阅读 1,361评论 0 12
  • part 1 “十年之前 我不认识你” 九月,秋分。我国古籍《春秋繁露·阴阳出入上下篇》中说:“秋分者,阴阳相半...
    陈家的宝aaaaaa阅读 464评论 0 0
  • 鲁隐公二年,这一年事情比较少了,比起第一年可以写的就少了很多。 有一件事情很有意思,之前知乎有个问答,问有没有最短...
    沙坞阅读 2,094评论 0 11
  • 《幸福之旅》运用家族系统排列科学引领你 走入真相的世界 帮助你看到生命本来的意义 看到生活原本的色彩 在这里 你将...
    043a2b3aa09b阅读 638评论 0 0
  • ———— 迎面遇见的世界 ————
    礼拜五兰阅读 1,337评论 2 0